ADVANCES IN ENERGY RESEARCH AND DEVELOPMENT

VOLUME 1

EDITED BYGrigorios L. Kyriakopoulos

New Energy and Future Energy Systems

With energy prices at an all-time high worldwide and the climate crisis making the need to replace fossil fuels an increasingly urgent issue, the development of new energy systems for the future has never been more important.

This book presents the proceedings of NEFES 2022, the 7th International Conference on New Energy and Future Energy Systems, originally scheduled to take place in Nanjing from 25 to 28 October 2022, but ultimately held as a fully virtual event as a result of ongoing pandemic restrictions. The NEFES conferences are dedicated to promoting scientific interchange among researchers, developers, engineers, students, and practitioners from around the world, providing participants with an opportunity to share their latest achievements and discuss the possible challenges of new energy and future energy systems. A total of 170 submissions were received for the conference, of which 34 papers were ultimately selected for presentation and publication after careful review and checking for plagiarism by means of the iThenticate tool. Topics addressed at NEFES 2022 included all aspects of energy, including solar and wind energy, smart grids, power transmission and distribution, electric vehicles, biomass, biofuels, bioenergy, new energy materials, energy-saving materials, energy storage materials and technology, energy and nanotechnology, hybrid energy systems, advanced energy technologies, energy generation and conversion, clean coal technology, renewable technology, fuel cells, hydro-energy, and geothermal energy.

Providing a current overview of the latest developments in many energy technologies, the book will be of interest to all those working in the field.

ISBN 978-1-64368-358-4 (print) ISBN 978-1-64368-359-1 (online) ISSN 2773-0476 (print) ISSN 2773-0484 (online)

NEW ENERGY AND FUTURE ENERGY SYSTEMS

Advances in Energy Research and Development

This international book series publishes peer reviewed proceedings, edited volumes and monographs on all aspects of energy research and development.

Understanding the generation and usage of various sorts of energy is crucial for crafting and maintaining a sustainable habitable planet. Topics therefore include different methods of energy generation: fossil, biomass, hydrogen; nuclear, solar, wind and hydro; energy storage and conversion; energy grids; energy in buildings; energy management and balancing; integrated systems; island systems; renewable and green energy; energy efficiency and conservation; cooling; environmental and mechanical engineering issues relating to energy; economic and policy issues relating to energy; energy transition and energy data collecting and analysis.

Interdisciplinary contributions covering technical, managerial, environmental and policy aspects of energy are encouraged as these match the questions our society asks and the solutions it demands from research.

Volume 1

New Energy and Future Energy Systems

Proceedings of NEFES 2022, online conference, China, 25–28 October 2022

Edited by

Grigorios L. Kyriakopoulos

School of Electrical and Computer Engineering, National Technical University of Athens, Greece

Amsterdam • Berlin • Washington, DC

© 2022 The authors and IOS Press.

This book is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

ISBN 978-1-64368-358-4 (print) ISBN 978-1-64368-359-1 (online)

Library of Congress Control Number: 2022949576

doi: 10.3233/AERD1

Publisher
IOS Press BV
Nieuwe Hemweg 6B
1013 BG Amsterdam
Netherlands

fax: +31 20 687 0019 e-mail: order@iospress.nl

For book sales in the USA and Canada: IOS Press, Inc. 6751 Tepper Drive Clifton, VA 20124 USA

Tel.: +1 703 830 6300 Fax: +1 703 830 2300 sales@iospress.com

LEGAL NOTICE

The publisher is not responsible for the use which might be made of the following information.

PRINTED IN THE NETHERLANDS

Preface

The 7th International Conference on New Energy and Future Energy Systems (NEFES 2022) was held from 25 to 28 October as an online conference (virtual conference without any physical participation). NEFES 2022 was originally planned to be held in Nanjing. Considering the health and safety of all the participants, pervasive travel restrictions as well as most authors' appeals under COVID-19, it was finally changed into a full online conference. The technical program included Keynote Speeches, Invited Speeches, Oral Presentations and Poster Presentations.

Previous editions of the NEFES were held in Beijing (2016), Yunnan (2017), Shanghai (2018), Macao (2019), and online in 2020, 2021 due to the restrictions caused by the COVID-19 pandemic.

NEFES 2022 was co-organized by the School of Mechanical Engineering, Southeast University, China and it provided a platform for researchers, scientists, engineers and professionals from all over the world to present their latest research results and new ideas in terms of new energy and future energy systems. This volume records the proceedings of NEFES 2022 and it contains 34 peer-reviewed papers, selected from more than 170 submissions.

The topics of NEFES 2022 covered all aspects of energy, including solar thermal energy, smart grids, power transmission and distribution, electric vehicles, solar and wind energy, biomass, biofuel, and bioenergy, new energy materials, energy-saving materials, energy storage materials, energy and nanotechnology, energy storage technology, hybrid energy systems, advanced energy technologies, energy generation and conversion, clean coal technology, renewable technology, fuel cells, hydro-energy, geothermal energy.

The Organizing Committee would like to thank all the keynote and invited speakers, the authors who contributed to NEFES 2022, the anonymous reviewers who provided their valuable comments and suggestions, as well as the technical program committee members who devoted their time to the assessment of the papers submitted for publication in the NEFES 2022 proceedings.

Editor

Dr. Grigorios L. Kyriakopoulos

School of Electrical and Computer Engineering, National Technical University of Athens, Greece

This page intentionally left blank

About the Conference

The 7th International Conference on New Energy and Future Energy Systems (NEFES 2022), co-hosted by the School of Mechanical Engineering, Southeast University, took place from 25 to 28 October 2022 as an online conference. Considering the health and safety of all the participants, pervasive travel restrictions as well as most authors' appeals under COVID-19, the conference organizer was forced to convert NEFES 2022 into a full online conference. It is very regrettable that the conference could not be held in Nanjing as originally planned. Following the successful NEFES 2021, and NEFES 2020 online, NEFES 2019 in Macau, NEFES 2018 in Shanghai, NEFES 2017 in Yunnan and NEFES 2016 in Beijing, the 7th NEFES conference is dedicated to promoting scientific interchange among researchers, developers, engineers, students, and practitioners all around the world. The participants gathered to share their latest achievements and discuss the possible challenges in terms of new energy and future energy system.

All the papers were reviewed by Technical Program Committee members and reviewers, who evaluated the paper quality and the research topics falling under the scope of NEFES. The tool iThenticate was used for plagiarism checking. 34 papers were selected and accepted from among 170 submissions.

Conference General Chair

Prof. Farhad Shahnia, Discipline of Engineering and Energy, Murdoch University, Australia

Technical Program Committee Chairs

Prof. Fuqiang Wang, Harbin Institute of Technology (Weihai), China.

Dr. Grigorios L. Kyriakopoulos, School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Greece.

Assoc. Prof. Jianxiong Zhu, School of Mechanical Engineering, Southeast University, Nanjing, China.

Technical Program Committee Members

Dr. Bingang Xu, Institute of Textiles and Clothing, Hong Kong Polytechnic University, China

Assoc. Prof. Briois Pascal, FEMTO-ST Institute / Université de Technologie de Belfort-Montbéliard, France

Dr. Mingjie Chen, Water Research Center, Sultan Qaboos University, Oman

Prof. Chongchong Qi, School of Resources and Safety Engineering, Central South University, China

Dr. Claudia Masselli, Department of Industrial Engineering, University of Naples Federico II, Italy

Dr. Constantinos S. Psomopoulos, High Voltage and Energy Systems Research Lab, Department of Electrical and Electronics Engineering, University of West Attica, Greece

Dr. Diana Enescu, Department of Electronics, Telecommunications and Energy, Valahia University of Targoviste, Romania

Dr. Grigoras Gheorghe, Electrical Engineering Faculty, Power System Department, "Gheorghe Asachi" Technical University of Iasi, Romania

Dr. Jiayang Liu, School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China

Dr. Kasra Amini, Department of Engineering Mechanics, KTH Royal Institute of Technology, Sweden

Dr. Lee Kiat Moon, UCSI University, Malaysia

Prof. Lin Wang, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, China

Dr. Luigi Costanzo, Department of Engineering, University of Campania "Luigi Vanvitelli", Italy

Dr. Mahmoud Nasr, Egypt-Japan University of Science and Technology (EJUST), Egypt

Assoc. Prof. Min Wang, College of Energy and Electrical Engineering, Hohai University, China

Dr. Mohammed Al-Gailani, Faculty of Engineering, Technology and Built Environment, UCSI University, Malaysia

Prof. Muslum Arici, Mechanical Engineering Department, Kocaeli University, Turkey Dr. Suyin Gan, University of Nottingham, Malaysia

Assoc. Prof. Tatiana Tambouratzis, Department of Industrial Management & Technology, University of Piraeus, Greece

Dr. Tomasz Kisielewicz, Warsaw University of Technology, Poland

Prof. Wojciech Czekała, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Poznań, Poland

Assoc. Prof. Yushi Liu, School of Civil Engineering, Harbin Institute of Technology, Harbin, China

Contents

Grigorios L. Kyriakopoulos	V
About the Conference	vii
Research on Carbon Dioxide Emission Reduction Accounting Method and Carbon Peak Path Design of New Energy Vehicles in China Shuang Sun, Li Wang, Qingwen Han and Shuaihua Li	1
Research on the Modelling and Simulation of Hydropower Mid-Long Term System <i>Qiong Wu, Jun Liu, Xiaojun Xie, Bo Yang, Hang Xi and Bingjia Wang</i>	13
Analysis of Common Problems and Whole Process Quality Control of Photovoltaic Power Station <i>Qiong Wu, Xiaojun Xie, Hang Xi, Bo Yang and Peng Cai</i>	23
Residual Stress Analysis of Solid Oxide Fuel Cells with Functional Gradient Material Electrodes Shuai Ma, Dingxi Xue, Qiangqiang Li, Guojun Li and Chongyang Feng	33
Study on Residual Stress and Failure Probability of Waveform Interface of Solid Oxide Fuel Cell Dingxi Xue, Qiangqiang Li, Shuai Ma, Keqin Liu and Guojun Li	41
Zero-Sequence Circulating Current Suppression for Parallel Three-Level Back-to-Back Converters Based on DPWM Hybrid Switching Modulation Strategy Mingjin Ding, Lei Xie, Changyu Zhu, Yongmi Zhang and Cheng Shi	49
Research on the Effectiveness of Wind Turbine Blade Repairing Based on the Hole Drilling and Adhesive Injection Approaches Bingjia Wang, Yi Han, Bo Tong, Yidong Zhang, Xiaojun Xie and Yong Zhao	59
Study on Aging of Composite Insulators and Anti-Contamination Flashover Coatings in Fujian Province Xinyuan Wan, Yunxiang Chen, Deyuan Lin, Xiaojian Xia, Shengxiang Luo and Yanqiong Shao	67
A Review of Research on the Influence of Photovoltaic Module Pollution on Power Generation Performance Jie Li, Bo Yang, Xiaolei Wang, Ruzhou Zhang, Yuzhu Gong, Maoqun He, Jingguo Hao, Weihu Li, Yongfeng Pei, Lei Zhao, Shujuan Wang, Qiong Wu and Wenji Cheng	72
Performance Analysis of a New Vehicle Braking Energy Recovery System Hong Li and Jiangwei Chu	81
Study on Bubble Dynamic Characteristics of Lead-Bismuth Alloy Under Natural Circulation Zhanzhong Liu and Guojun Li	89

Energy Saving: Political and Economic Aspects in the Context After February 24, 2022 Volodymyr (Vladimir) Mamalyga and Tetiana Malai	96
Methanol Synthesis by Gasification of Medical Plastic Waste Caused by COVID-19 Jie Zhang, Zimiao Wang, Yuan Jin, Xudong Song, Bo Wang, Wenxian Su, Jing Jin, Xuantao Wu and Weijia Huang	105
Study on the Properties of Lauric Acid Paraffin Wax Volcanic Rock Shape-Stabilized Phase Change Materials Fang Wang, Lixian Xiao, Jianqiu Wang and Yongtai He	112
Parametric Finite Element Analysis of Belt Type Assembly of PEMFC Guoqing Liu, Zhendong Zhao, Jinguo Wu and Wei Huang	119
Experimental Study of Helium Discharge on Linear Plasma Device Bo Shi, Wei Lu, Shengnan He, Wenjing Pu, Junli Qi, Hui Zhang, Baoming Wang, Jiajia Han, Lianqing Zhang, Huihui Shan, Xiaomin Ma and Weihua Wang	129
Geometry Optimization of Hot Water Storage Tank Based on Numerical Simulation Tingsen Liu, Mian Yan, Xiangbo Song and Yongtai He	136
Analysis on Transformer Protection Potential Fault Trip Resulting from CT's Wrong Connection Nina Liu, Kai Qiao, Yongqiang Xie and Jie Hui	146
The Analysis on Controlbox Mal-Operation Resulting from Secondary Circuit's Mistaken Wiring Kai Qiao, Nina Liu, Jie Hui and Yongqiang Xie	153
Comparison and Analysis of Virtual Power Plant and Peer-to-Peer Transaction Applied to Distributed Generation Market Transaction in China Guodong Jiang, Tao Han, Hongwei Du, Xiaojun Niu, Xueqiong Wu, Rongqiang Feng, Dong Xia and Yuhang Li	159
The Improvement of Triple Trip Realization Method of Circuit Breaker Trip Circuit Communication Jie Hui, Rengang Chen, Kai Qiao and Nina Liu	175
Numerical Study on Thermal Performance and Flow Characteristic of Phase Change Material Heat Storage Unit with Capsule-Shaped Structure Yan Dong, Fuqiang Wang, Changhao Yu, Xuhang Shi, Ziming Cheng, Huaxu Liang and Aoyu Zhang	180
The Effect of Leakage Current on the Performance of Proton-Conducting Solid Oxide Fuel Cells <i>Qiangqiang Li, Yanghui Zhang, Lili Shen, Ning Zhao, Tao Zhang and Xiaoxia Sun</i>	189
Two Dimensional Computational Fluid Dynamics Studies of a Fluidized Bed with Binary Solid Mixtures Viraj Bhatt, Arijit Ganguli, Jaydevsinh Chavda and Harsh Gadoya	197

Intelligent Prediction and Experimental Study on Deep Peak-Regulation Capability of Thermal Power Units Xuchen Fu, Lunbo Duan, Yankai Wang, Yi Han and Yingli Yu	205
Study of Psychological and Behavioral Factors Influencing Public Acceptability of Sustainable Energy Transition in China Zijin Wang	217
Cause Analysis and Improvement Measures of 35kV Dry Hollow Reactor Burning Failure Nina Liu	227
Research and Application of Characteristic Test Device for Electrochemical Energy Storage Grid Connected Yongming Zhang, Xikui Wang and Wenping Gu	236
Study on Ecological Restoration Technology of Slope for Power Transmission and Transformation Facilities Yao Chen, Shixiong Jiang, Xi Li, Chongqing Wang, Yanhong Che, Sunxian Weng and Zeqin Chen	249
Optimal Dispatch of Combined Heat and Power System Considering Adequacy Resources on Demand Side Xulei Zhao	255
Cleaning Time Prediction Method of Photovoltaic Power Station Based on Short-Term Environmental Change Ying Zhong, Bo Zhang, Li Zheng, Dantong Feng and Xu Ji	263
The Performances of RTV Coated Surfaces and Their Services in Transmission Lines Xinyuan Wan, Xiaojian Xia, Yiyang Chen, Deyuan Lin, Jiceng Han, Yinghao Ye and Wenzhe Zhang	272
Experimental Optimization of Castor Oil Transesterification by Central Composite Design for Biodiesel Production Somboon Sukpancharoen, Natacha Phetyim, Chaiviwat Krittasin and Manatsanan Chanthasuwannasin	282
Rotor Position Estimation of Permanent Magnet Synchronous Motor Based on Disturbance Model Qiang Men, Jiaming Cai, Junbi Tan and Xiangtao Fang	295
Subject Index	305
Author Index	307

© 2022 The authors and IOS Press.

This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

Subject Index

acceptability	217	duration of functioning during	
adjustment time	236	the day	96
aging	67	EC-BERS	81
annual hourly runoff simulation	13	ecological restoration	249
ANSYS	136	electric vehicles orderly charge	
anti-icing	272	and discharge load	255
anti-pollution flashover coatings	67	electrochemical energy storage	236
ash attenuation	263	electromagnetic coupler	81
assumed coordinate system	295	energy-efficient	96
bed segregation	197	Faraday efficiency	189
belt	119	feasibility study	96
binary mixtures	197	field application	236
biodiesel	282	fire accident	227
blade	59	flashover with coating damage	272
bubble	89	flexible heat load	255
capsule-shaped	180	flow patterns	197
carbon dioxide emission reduction	1	fluidized bed	197
accounting	1	flywheel	81
carbon dioxide peak path	1	functional gradient materials	33
castor oil	282	gasification	105
cause analysis	23	geometry optimization	136
CFD	197	grid connection test	236
China	217	hard contact	175
circuit breaker trip circuit	175	heat storage unit	180
circulating current suppression	49	helium discharge	129
climate change	217	helium spectrum	129
combined heat and power	255	homogenous catalyst	282
communication triple trip (CTT)	175	hot water storage tank	136
composite insulators	67	hybrid powertrain	81
composition of RTV coatings	272	hybrid switching modulation	
control circuit 153	, 175	strategy	49
cost of equipment	96	hydrodynamic safety	205
cost of money	96	impact	72
COVID-19	105	impacted bolt	146
CT	146	incandescent	96
deep peak-regulation	205	lamp	96
defect repair	59	lauric acid	112
demand response	255	lead-bismuth alloy (LBE)	89
distributed generation transaction	159	leakage current	189
disturbance observer	295	LED	96
DPWM	49	lightweight	119
dry hollow reactor	227	linear plasma device	129

low load stable combustion	205	response surface methodology	282
measures and suggestions	227	response time	236
medical plastic waste	105	revenue analysis	159
medium and long term scheduling	13	scenario analysis	1
methanol	105	secondary circuit	153
mistaken wiring	153	selection	96
natural circulation	89	sensorless	295
new energy vehicles	1	shape-stabilized phase change	
non-flat interface	41	material	112
numerical model	189	slope	249
numerical simulation 136	5, 205	solid oxide fuel cell	41
optimal dispatch	255	stearic acid	112
peak sun hour	263	subsidy	159
peer-to-peer	159	superhydrophobic surface	272
phase change material	180	sustainable energy transition	217
photovoltaic	23	syngas	105
plasma density	129	system model	13
political and economic risks	96	tariffs	96
power conversion	81	thermal energy storage	180
power generation 72	2, 263	thermal power units	205
power transmission and		thermal properties	112
transformation facilities	249	thermal stress mismatch	33
probability of failure	41	three-level back-to-back converters	
protection configuration	227	trading model	159
proton conductor solid oxide		transaction platform	159
fuel cell	189	transformer protection	146
proton exchange membrane		trip	153
fuel cell	119	uniformity of contact pressure	119
punching holes	59	virtual power plant	159
PV module pollution	72	volcanic rock	112
PV plant	263	whole process quality control	
quality problems	23	strategy	23
ratio differential	146	wind power accommodation	255
relay protection	175	wind turbine	59
residual stress 3	3, 41		

© 2022 The authors and IOS Press.

This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

Author Index

Bhatt, V.	197	Jin, Y.	105
Cai, J.	295	Krittasin, C.	282
Cai, P.	23	Li, G.	33, 41, 89
Chanthasuwannasin, M.	282	Li, H.	81
Chavda, J.	197	Li, J.	72
Che, Y.	249	Li, J. Li, Q.	33, 41, 189
Chen, R.	175	Li, Q. Li, S.	1
Chen, Yao	249	Li, W.	72
Chen, Yiyang	272	Li, X.	249
Chen, Yunxiang	67	Li, Y.	159
Chen, Z.	249	Liang, H.	180
Cheng, W.	72	Lin, D.	67, 272
Cheng, Z.	180	Liu, G.	119
Chu, J.	81	Liu, J.	13
Ding, M.	49	Liu, K.	41
Dong, Y.	180	Liu, N.	146, 153, 175, 227
Du, H.	159	Liu, T.	136
Du, 11. Duan, L.	205	Liu, Z.	89
Fang, X.	295	Lu, W.	129
Feng, C.	33	Luo, S.	67
Feng, D.	263	Ma, S.	33, 41
Feng, R.	159	Ma, X.	129
Fu, X.	205	Malai, T.	96
Gadoya, H.	197	Mamalyga, V.	96
Ganguli, A.	197	Men, Q.	295
Gong, Y.	72	Niu, X.	159
Gu, W.	236	Pei, Y.	72
Han, Jiajia	129	Phetyim, N.	282
Han, Jiceng	272	Pu, W.	129
Han, Q.	1	Qi, J.	129
Han, T.	159	Qiao, K.	146, 153, 175
Han, Y.	59, 205	Shan, H.	129
Hao, J.	72	Shan, 11. Shao, Y.	67
He, M.	72	Shen, L.	189
He, S.	129	Shi, B.	129
He, Y.	112, 136	Shi, C.	49
Huang, Wei	112, 130	Shi, X.	180
Huang, Weijia	105	Song, Xiangbo	136
Hui, J.	146, 153, 175	Song, Xudong	105
Ji, X.	263	Su, W.	105
Ji, A. Jiang, G.	159	Sukpancharoen, S.	282
Jiang, S.	249	Sukpanenaroen, S. Sun, S.	1
_	105		189
Jin, J.	103	Sun, X.	189

Tan, J.	295	Xie, X.	13, 23, 59
Tong, B.	59	Xie, Y.	146, 153
Wan, X.	67, 272	Xue, D.	33, 41
Wang, Baoming	129	Yan, M.	136
Wang, Bingjia	13, 59	Yang, B.	13, 23, 72
Wang, Bo	105	Ye, Y.	272
Wang, C.	249	Yu, C.	180
Wang, Fang	112	Yu, Y.	205
Wang, Fuqiang	180	Zhang, A.	180
Wang, J.	112	Zhang, B.	263
Wang, L.	1	Zhang, H.	129
Wang, S.	72	Zhang, J.	105
Wang, W.	129	Zhang, L.	129
Wang, Xiaoleiv	72	Zhang, R.	72
Wang, Xikui	236	Zhang, T.	189
Wang, Y.	205	Zhang, W.	272
Wang, Zijin	217	Zhang, Yanghui	189
Wang, Zimiao	105	Zhang, Yidong	59
Weng, S.	249	Zhang, Yongmi	49
Wu, J.	119	Zhang, Yongming	236
Wu, Q.	13, 23, 72	Zhao, L.	72
Wu, Xuantao	105	Zhao, N.	189
Wu, Xueqiong	159	Zhao, X.	255
Xi, H.	13, 23	Zhao, Y.	59
Xia, D.	159	Zhao, Z.	119
Xia, X.	67, 272	Zheng, L.	263
Xiao, L.	112	Zhong, Y.	263
Xie, L.	49	Zhu, C.	49