
Alex Dimakis

joint work with

Ashish Bora, Dave Van Veen and Ajil Jalal,

Sriram Vishwanath and Eric Price, UT Austin

Deep Generative models

for Inverse Problems

Outline

• Generative Models

• Using generative models for Inverse

problems/compressed sensing

• Main theorem and proof technology

• Using an untrained GAN (Deep Image Prior)

• Conclusions

• Other extensions:

• Using non-linear measurements

• Using GANs to defend from Adversarial examples.

• AmbientGAN: Learning a distribution from noisy samples

• CausalGAN: Learning causal interventions.

Types of Neural nets: Classifiers

3

Types of Neural nets: Classifiers

4

Pr(cat) =0.7

Pr(banana) =0.01

Pr(dog)
=0.02

...

Types of Neural nets: Classifiers

5

Pr(cat) =0.7

Pr(banana) =0.01

Pr(dog)
=0.02

...

Supervised Learning= needs labeled data

Types of Neural nets: Generators

6

random
noise z

G(z)

W1 W2 W3

Unsupervised Learning= needs unlabeled data
Learns a high-dimensional distribution

Generative models

G(z)z

• A generative model is a

magical black box that

takes a vector z in Rk and produces a

vector G(z) in Rn

• A new way to parametrize high-

dimensional distributions.

• (vs Graphical Models, HMMs etc)

Generative models

G(z)z

• A generative model is a

magical black box that

takes a vector z in Rk and produces a

vector G(z) in Rn

• Differentiable Compression:

• k=100, n=64 ⨯ 64⨯3 ≈ 13000

• It can be trained to take gaussian iid z

and produce samples of complicated

distributions, like human faces.

Generative models

G(z)z

• A generative model is a

magical black box that

takes a vector z in Rk and produces a

vector G(z) in Rn

• k=100, n=64 ⨯ 64⨯3 ≈ 13000

• It can be trained to take gaussian iid z

and produce samples of complicated

distributions, like human faces.

• Training can be done using standard

ML (Autoencoders/VAE) or using

adversarial training (GANs)

• It is a differentiable function

How training a GAN looks like

10

random
noise
z

G(z)

11

random
noise
z

G(z)

How training a GAN looks like

12

random
noise
z

G(z)

How training a GAN looks like

13

random
noise
z

G(z)

How training a GAN looks like

14

random
noise
z

G(z)

How training a GAN looks likeAny Resemblance

to Actual Persons,

Living or Dead,

is Purely Coincidental

Adversarial Training

15

Adversarial Training

16

Adversarial Training

17

Adversarial Training

18

Adversarial Training

19

You can travel in z space too

R13000

R100

z1=[1,0,0,..]

z2=[1,2,3,..]

G(z1)

You can travel in z space too

R13000

R100

z1=[1,0,0,..]

z2=[1,2,3,..]

G(z1)

BEGANs produce amazing images

Ok, Modern deep generative models

produce amazing pictures.

But what can we do with them ?

Compressed sensing

Am = mx* y

n

• You observe y = A x* , x in Rn , y in Rm, n>m
• i.e. m (noisy) linear observations of an unknown vector y in Rn

• Goal: Recover x* from y
• ill-posed: there are many possible x* that explain the measurements since we

have m linear equations with n unknowns.
• High-dimensional statistics: Number of parameters n > number of samples m
• Must make some assumption: that x* is natural in some sense.

Compressed sensing

Am = mx* y

n

• Standard assumption: x is k-sparse. |x|0 =k
• Noiseless CompSensing optimal recovery problem:

k

Compressed sensing

Am = mx* y

n

• Standard assumption: x is k-sparse. |x|0 =k
• Noiseless CompSensing optimal recovery problem:

• NP-hard
• Relax to solving Basis pursuit
• Under what conditions is the relaxation tight?

k

Compressed sensing

• Question: for which measurement matrices A, is x* = x1 ?

• [Donoho,Candes and Tao, RombergCandesTao]
• If A satisfies (RIP/REC/NSP) condition then x* = x1

• Also: If A is created random iid N(0, 1/m) with
• m = k log n/k then whp it will satisfy the RIP/REC condition.

• So: A random measurement matrix A with enough measurements
suffices for the LP relaxation to produce the exact
unknown sparse vector x*

Sparsity in compressed sensing

• Q1: When do you want to recover some unknown vector by
observing linear measurements on its entries?

Sparsity in compressed sensing

• Q1: When do you want to recover some unknown vector by
observing linear measurements on its entries?

Sparsity in compressed sensing

• Q1: When do you want to recover some unknown vector by
observing linear measurements on its entries?

sum over values of
pixels

Sparsity in compressed sensing

• Q1: When do you want to recover some unknown vector by
observing linear measurements on its entries?

• Real images are not sparse (except night-time sky).
• But they can be sparse in a known basis , i.e. x’’= D x*

• D can be DCT or Wavelet basis.

sum over values of
pixels

Sparsity in compressed sensing

• Q1: When do you want to recover some unknown vector by
observing linear measurements on its entries?

• Real images are not sparse (except night-time sky).
• But they can be sparse in a known basis , i.e. x’’= D x*

• D can be DCT or Wavelet basis.

sum over values of
pixels

1. Sparsity in a basis is a decent

model for natural images

2. But now we have much better

data driven models for natural

images: VAEs and GANs

3. Idea: Take sparsity out of

compressed sensing. Replace

with GAN

4. Ok. But how to do that?

Generative model

A ym = mx*

G(z*) = x*z*

n

Generative model

A ym = mx*

G(z*) = x*z*

• Assume x* is in the range of a good generative model G(z).
• How do we recover x* =G(z*) given noisy linear

measurements?
• y = A x* + η
• What happened to sparsity k ?

n

Generative model

A ym = mx*

G(z*) = x*z*

• Assume x* is in the range of a good generative model G(z).
• How do we recover x* =G(z*) given noisy linear

measurements?
• y = A x* + η

k

n

Generative model

A ym = mx*

G(z*) = x*z*

• Assume x* is in the range of a good generative model G(z).
• How do we recover x* =G(z*) given noisy linear

measurements?
• y = A x* + η

k

n

Ok, you are replacing sparsity with a

neural network.

To recover before, we were using

Lasso.

What is the recovery algorithm now?

Recovery algorithm: Step 1: Inverting a GAN

x1

G(z)z

• Given a target image x1 how do we invert the GAN, i.e. find a
z1 such that G(z1) is very close to x1 ?

?

Recovery algorithm: Step 1: Inverting a GAN

x1

G(z)z

• Given a target image x1 how do we invert the GAN, i.e. find a
z1 such that G(z1) is very close to x1 ?

• Just define a loss J(z) = || G(z) – x1||
• Do gradient descent on z (network weights fixed).

?

Recovery algorithm: Step 1: Inverting a GAN

x1

G(z)z

• Given a target image x1 how do we invert the GAN, i.e. find a
z1 such that G(z1) is very close to x1 ?

• Just define a loss J(z) = || G(z) – x1||
• Do gradient descent on z (network weights fixed).

Related work :
Creswell and Bharath (2016)
Donahue, Krahenbuhl,Trevor 2016
Dumoulin et al.
Adversarially learned Inference
Lipton and Tripathi 2017

Recovery algorithm: Step 2: Inpainting

x1

G(z)z

• Given a target image x1 observe only some pixels.
• How do we invert the GAN now?

Recovery algorithm: Step 2: Inpainting

x1

G(z)z

• Given a target image x1 observe only some pixels.
• How do we invert the GAN, i.e. find a z1 such that G(z1) is very

close to x1 on the observed pixels?
• Just define a loss J(z) = || A G(z) –A x1||
• Do gradient descent on z (network weights fixed).

Recovery algorithm: Step 2: Inpainting

x1

G(z)z

• Given a target image x1 observe only some pixels.
• How do we invert the GAN, i.e. find a z1 such that G(z1) is very

close to x1 on the observed pixels?
• Just define a loss J(z) = || A G(z) –A x1||
• Do gradient descent on z (network weights fixed).

Recovery algorithm: Step 3: Super-resolution

x1

G(z)z

• Given a target image x1 observe blurred pixels.
• How do we invert the GAN?

Recovery algorithm: Step 3: Super-resolution

x1

G(z)z

• Given a target image x1 observe blurred pixels.
• How do we invert the GAN, i.e. find a z1 such that G(z1) is very

close to x1 After it has been blurred?
• Just define a loss J(z) = || A G(z) –A x1||
• Do gradient descent on z (network weights fixed).

Recovery algorithm: Step 3: Super-resolution

x1

G(z)z

• Given a target image x1 observe blurred pixels.
• How do we invert the GAN, i.e. find a z1 such that G(z1) is very

close to x1 After it has been blurred?
• Just define a loss J(z) = || A G(z) –A x1||
• Do gradient descent on z (network weights fixed).

Recovery from linear measurements

yG(z)z A

No Nebulous agenda

Recovery from linear measurements

yG(z)z A

Our algorithm is:

Do gradient descent in z space

to satisfy measurements.

Obtain useful gradients

through the measurements

using backprop.

Comparison to Lasso

• m=500 random Gaussian
measurements.

• n= 13k dimensional
vectors.

Comparison to Lasso

• m=500 random Gaussian
measurements.

• n= 13k dimensional
vectors.

Comparison to Lasso

• m=500 random Gaussian
measurements.

• n= 13k dimensional
vectors.

Comparison to Lasso

Related work

• Significant prior work on structure beyond sparsity

• Model-based CS (Baraniuk et al., Cevher et al.,

Hegde et al., Gilbert et al. , Duarte & Eldar)

• Projections on Manifolds:

• Baraniuk & Wakin (2009) Random projections of

smooth manifolds. Eftekhari & Wakin (2015)

• Deep network models:

• Mousavi, Dasarathy, Baraniuk (here),

• Chang, J., Li, C., Poczos, B., Kumar, B., and

Sankaranarayanan, ICCV 2017

Main results

• Let

• Solve

Main results

• Let

• Solve

• Theorem 1: If A is iid N(0, 1/m) with

• Then the reconstruction is close to optimal:

Main results

• Let

• Solve

• Theorem 1: If A is iid N(0, 1/m) with

• Then the reconstruction is close to optimal:

• (Reconstruction accuracy proportional to model accuracy)
• Thm2: More general result: m = O(k log L) measurements for any

L-Lipschitz function G(z)

Main results

• The first and second term are essentially necessary.

• The third term is the extra penalty ε for gradient descent sub-optimality.

Representation
error

noise optimization
error

Part 3

Proof ideas

Proof technology

Usual architecture of compressed sensing proofs for Lasso:

Lemma 1: A random Gaussian measurement matrix has RIP/REC
whp for m = k log(n/k) measurements.

Lemma 2: Lasso works for matrices that have RIP/REC.

Lasso recovers a xhat close to x*

Proof technology

For a generative model defining a subset of images S:

Lemma 1: A random Gaussian measurement matrix has S-REC
whp for sufficient measurements.

Lemma 2: The optimum of the squared loss minimization
recovers a zhat close to z* if A has S-REC.

Proof technology

Why is the Restricted Eigenvalue Condition (REC) needed?

Lasso solves:

If there is a sparse vector x in the nullspace of A then this fails.

Proof technology

Why is the Restricted Eigenvalue Condition (REC) needed?

Lasso solves:

If there is a sparse vector x in the nullspace of A then this fails.

REC: All approximately k-sparse vectors x are far from the nullspace:

A vector x is approximately k-sparse if there exists a set of k coordinates
S such that

Proof technology

Unfortunate coincidence: The difference of two k-sparse vectors is 2k
sparse.

But the difference of two natural images is not natural.

The correct way to state REC (That generalizes to our S-REC) is

For any two k-sparse vectors x1,x2 , their difference is far from the
nullspace:

Proof technology

Our Set-Restricted Eigenvalue Condition (S-REC). For any set

A matrix A satisfies S-REC if for all x1, x2 in S

For any two natural images, their difference is far from the nullspace of
A:

Proof technology

Our Set-Restricted Eigenvalue Condition (S-REC). For any set

A matrix A satisfies S-REC if for all x1, x2 in S

The difference of two natural images is far from the nullspace of A:

• Lemma 1: If the set S is the range of a generative model of d-relu
layers then

• m= O (k d logn) measurements suffice to make a Gaussian iid matrix
S-REC whp.

• Lemma 2: If the matrix has S-REC then squared loss optimizer zhat

must be close to z*

Outline

• Generative Models

• Using generative models for compressed sensing

• Main theorem and proof technology

• Using an untrained GAN (Deep Image Prior)

• Conclusions

• Other extensions:

• Using non-linear measurements

• Using GANs to defend from Adversarial examples.

• AmbientGAN

• CausalGAN

Recovery from linear measurements

yG(z)z A

Lets focus on A =I (Denoising)

yG(z)z A

But I do not have the right weights w of the generator!

w

Denoising with Deep Image Prior

yG(z)z A

But I do not have the right weights w of the generator!
Train over weights w. Keep random z0

w

Denoising with Deep Image Prior

yG(z)z A

But I do not have the right weights w of the generator!
Train over weights w. Keep random z0

w

Denoising with Deep Image Prior

yG(z)z A

But I do not have the right weights w of the generator!
Train over weights w. Keep random z0

w

random
noise
z

G(z) Noisy x

w1 w2 w3

The fact that an image can be generated by convolutional
weights applied to some random noise, makes it natural

Can be applied to any dataset

From our recent preprint:
Compressed Sensing with Deep Image Prior and Learned Regularization

Can be applied to any dataset

From our recent preprint:
Compressed Sensing with Deep Image Prior and Learned Regularization

DIP-CS vs Lasso

From our recent preprint:
Compressed Sensing with Deep Image Prior and Learned Regularization

Conclusions and outlook

• Defined compressed sensing for images coming from generative

models

• Performs very well for few measurements. Lasso is more accurate for

many measurements.

• Ideas: Better loss functions, combination with lasso, using

discriminator in reconstruction.

• Theory of compressed sensing nicely extends to S-REC and recovery

approximation bounds.

• Algorithm can be applied to non-linear measurements. Can solve

general inverse problems for differentiable measurements.

• Plug and play different differentiable boxes !

• Better generative models (eg for MRI datasets) can be useful.

• Deep Image prior can be applied even without a pre-trained GAN

• Idea of differentiable compression seems quite general.

• Code and pre-trained models:

• https://github.com/AshishBora/csgm

• https://github.com/davevanveen/compsensing_dip

https://github.com/AshishBora/csgm
https://github.com/AshishBora/csgm

fin

Main results

• For general L-Lipschitz functions.

• Minimize only over z vectors within a ball.

• Assuming poly(n) bounded weights: L= n O(d) ,δ= 1/n O(d)

Intermezzo

Our algorithm works

even for non-linear measurements.

Recovery from nonlinear measurements

yG(z)z

• This recovery method can be applied even for any non-linear
measurement differentiable box A.

• Even a mixture of losses: approximate my face but also
amplify a mustache detector loss.

A
(nonlinear operator)

Using nonlinear measurements

y
G(z)z A

(Gender detector)

x

Target
image

Using nonlinear measurements

yG(z)z A
(Gender detector)

x
Target
image

Using nonlinear measurements

yG(z)z A
(Gender detector)

x
Target
image

Using nonlinear measurements

yG(z)z A
(Gender detector)

x
Target
image

Using nonlinear measurements

yG(z)z A
(Gender detector)

x
Target
image

Part 4: Dessert

Adversarial examples in ML

Using the idea of compressed

sensing to defend from adversarial

attacks.

Lets start with a good cat classifier

85

Pr(cat)
=0.97

Modify image slightly to maximize Pcat(x)

86

Pr(cat)
=0.01

Move x input to maximize ‘catness’ of x while keeping it close to xcostis

xcostis

Adversarial examples

87

Pr(cat)
=0.998

Move x input to maximize ‘catness’ of x while keeping it close to xcostis

xadv

88

1. Moved in the direction

pointed by cat classifier

2. Left the manifold of natural

images

Costis

sort of cats

Cats

Difference from before?

R13000

R100

z1=[1,0,0,..]

z2=[1,2,3,..]

G(z1)

In our previous work we were doing
gradient descent in z-space so staying
in the range of the Generator.

• Suggests that there are no
adversarial examples in the range
of the generator

• Shows a way to defend classifiers
if we have a GAN for the domain:
simply project on the range before
classifying.

• (we have a preprint on that).

Defending using a classifier

using a GAN

Classifier C

xadv

C(x)

Unprotected classifier with input xadv

Defending using a classifier

using a GAN

Classifier C

xadv

C(xproj)

Treating xadv as noisy nonlinear compressed
sensing observations. Projecting on manifold G(z)
before feeding in classifier.

xproj

Defending using a classifier

using a GAN

Classifier C

xadv

C(xproj)

Treating xadv as noisy nonlinear compressed
sensing observations. Projecting on manifold G(z)
before feeding in classifier.

xproj

This idea was proposed

independently by Samangouei,

Kabkab and Chellappa

Defending using a classifier

using a GAN

Classifier C

xadv

C(xproj)

Treating xadv as noisy nonlinear compressed
sensing observations. Projecting on manifold G(z)
before feeding in classifier.

xproj

This idea was proposed

independently by Samangouei,

Kabkab and Chellappa

Turns out there are adversarial

examples even on the manifold G(z)

(as found in our preprint and

independently by Athalye, Carlini,

Wagner)

Defending using a classifier

using a GAN

Classifier C

xadv

C(xproj)

Treating xadv as noisy nonlinear compressed
sensing observations. Projecting on manifold G(z)
before feeding in classifier.

xproj

This idea was proposed

independently by Samangouei,

Kabkab and Chellappa

Turns out there are adversarial

examples even on the manifold G(z)

(as found in our preprint and

independently by Athalye, Carlini,

Wagner)

Defending using a classifier

using a GAN

Classifier C

xadv

C(xproj)

Treating xadv as noisy nonlinear compressed
sensing observations. Projecting on manifold G(z)
before feeding in classifier.

xproj

This idea was proposed

independently by Samangouei,

Kabkab and Chellappa

Turns out there are adversarial

examples even on the manifold G(z)

(as found in our preprint and

independently by Athalye, Carlini,

Wagner)

Can be made robust using

adversarial training on the manifold:

Robust Manifold Defense.

The Robust Manifold Defense (Arxiv paper)
Blog post on Approximately Correct on using GANs for defense

CausalGAN
work with Murat Kocaoglu and Chris Snyder,

Postulate a causal structure on attributes (gender, mustache, long
hair, etc)

Create a machine that can sample conditional and interventional
samples: we call that an implicit causal generative model.

Adversarial training.

The causal generator seems to allow configurations never seen in
the dataset (e.g. women with mustaches)

CausalGAN

Gender

Age

Mustache

Bald

Glasses

Image
Generator

G(z)

extra random bits
z

CausalGAN

Conditioning on Bald=1 vs Intervention (Bald=1)

CausalGAN

Conditioning on Bald=1 vs Intervention (Bald=1)

CausalGAN

Conditioning on Mustache=1 vs Intervention (Mustache=1)

CausalGAN

Conditioning on Mustache=1 vs Intervention (Mustache=1)

