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Types of Neural nets: Generators 
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random 
noise z

G(z)

W1 W2 W3

Unsupervised Learning= needs unlabeled data
Learns a high-dimensional distribution



Generative models

G(z)z

• A generative model is a 

magical black box that

takes a vector z in Rk and produces a 

vector  G(z) in Rn

• A new way to parametrize high-

dimensional distributions. 

• (vs Graphical Models, HMMs etc)
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Generative models

G(z)z

• A generative model is a 

magical black box that

takes a vector z in Rk and produces a 

vector  G(z) in Rn

• k=100, n=64 ⨯ 64⨯3 ≈ 13000

• It can be trained to take gaussian iid z 

and produce samples of complicated 

distributions, like human faces. 

• Training can be done using standard 

ML (Autoencoders/VAE) or using 

adversarial training (GANs) 

• It is a differentiable function
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random 
noise 
z

G(z)

How training a GAN looks likeAny Resemblance 

to Actual Persons,

Living or Dead, 

is Purely Coincidental
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You can travel in z space too 

R13000

R100

z1=[1,0,0,..]

z2=[1,2,3,..]

G(z1)



BEGANs produce amazing images



Ok, Modern deep generative models 

produce amazing pictures. 

But what can we do with them ?



Compressed sensing

Am = mx* y

n

• You observe y = A x* ,     x in Rn , y  in Rm,  n>m
• i.e. m (noisy) linear observations of an unknown vector y in Rn

• Goal: Recover x* from y
• ill-posed: there are many possible x* that explain the measurements since we 

have m linear equations with n unknowns. 
• High-dimensional statistics: Number of parameters n > number of samples m
• Must make some assumption: that x* is natural in some sense. 
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• Noiseless CompSensing optimal recovery problem: 

k



Compressed sensing

Am = mx* y

n

• Standard assumption: x is k-sparse. |x|0 =k 
• Noiseless CompSensing optimal recovery problem:

• NP-hard
• Relax to solving Basis pursuit  
• Under what conditions is the relaxation tight?

k



Compressed sensing

• Question: for which measurement matrices A,  is  x* = x1   ?

• [Donoho,Candes and Tao, RombergCandesTao] 
• If A satisfies (RIP/REC/NSP) condition then x* = x1

• Also: If A is created random iid N(0, 1/m ) with 
• m = k log n/k then whp it will satisfy the RIP/REC condition.

• So: A random measurement matrix A with enough measurements 
suffices for the LP relaxation to produce the exact 
unknown sparse vector x*
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Sparsity in compressed sensing 

• Q1: When do you want to recover some unknown vector by 
observing linear measurements on its entries? 

• Real images are not sparse (except night-time sky). 
• But they can be sparse in a known basis , i.e. x’’= D x*

• D can be DCT or Wavelet basis. 

sum over values of 
pixels

1. Sparsity in a basis is a decent 

model for natural images 

2. But now we have much better 

data driven models for natural 

images: VAEs and GANs 

3. Idea: Take sparsity out of 

compressed sensing. Replace 

with GAN

4. Ok. But how to do that?
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• Assume x* is in the range of a good generative model G(z). 
• How do we recover x*  =G(z*) given noisy linear 

measurements?
• y = A x* + η
• What happened to sparsity k ?

n
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Generative model

A ym = mx*

G(z*) = x*z*

• Assume x* is in the range of a good generative model G(z). 
• How do we recover x*  =G(z*) given noisy linear 

measurements?
• y = A x* + η

k

n

Ok, you are replacing sparsity with a 

neural network. 

To recover before, we were using 

Lasso. 

What is the recovery algorithm now?



Recovery algorithm: Step 1: Inverting a GAN 

x1

G(z)z

• Given a target image x1 how do we invert the GAN, i.e. find a 
z1 such that G(z1) is very close to x1 ? 
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Recovery algorithm: Step 1: Inverting a GAN 

x1

G(z)z

• Given a target image x1 how do we invert the GAN, i.e. find a 
z1 such that G(z1) is very close to x1 ? 

• Just define a loss J(z) = || G(z) – x1|| 
• Do gradient descent on z (network weights fixed). 

Related work : 
Creswell and Bharath (2016) 
Donahue, Krahenbuhl,Trevor 2016 
Dumoulin et al. 
Adversarially learned Inference 
Lipton and Tripathi 2017 
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Recovery algorithm: Step 3: Super-resolution

x1

G(z)z

• Given a target image x1 observe blurred pixels.
• How do we invert the GAN, i.e. find a z1 such that G(z1) is very 

close to x1 After it has been blurred? 
• Just define a loss J(z) = || A G(z) –A  x1|| 
• Do gradient descent on z (network weights fixed). 
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Recovery from linear measurements 

yG(z)z A

Our algorithm is:

Do gradient descent in z space 

to satisfy measurements. 

Obtain useful gradients 

through the measurements 

using backprop.  
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Related work

• Significant prior work on structure beyond sparsity

• Model-based CS (Baraniuk et al., Cevher et al., 

Hegde et al., Gilbert et al. , Duarte & Eldar) 

• Projections on Manifolds:

• Baraniuk & Wakin (2009) Random projections of 

smooth manifolds. Eftekhari & Wakin (2015) 

• Deep network models:

• Mousavi, Dasarathy, Baraniuk (here), 

• Chang, J., Li, C., Poczos, B., Kumar, B., and 

Sankaranarayanan, ICCV 2017
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Main results

• Let

• Solve

• Theorem 1: If A is iid N(0, 1/m) with 

• Then the reconstruction is close to optimal: 

• (Reconstruction accuracy proportional to model accuracy) 
• Thm2: More general result: m = O( k log L ) measurements for any 

L-Lipschitz function G(z)



Main results

• The first and second term are essentially necessary. 

• The third term is the extra penalty ε for gradient descent sub-optimality. 

Representation 
error

noise optimization 
error



Part 3

Proof ideas 



Proof technology

Usual architecture of compressed sensing proofs for Lasso:

Lemma 1: A random Gaussian measurement matrix has RIP/REC
whp for m = k log(n/k) measurements. 

Lemma 2: Lasso works for matrices that have RIP/REC.

Lasso recovers a xhat close to x*



Proof technology

For a generative model defining a subset of images S:

Lemma 1: A random Gaussian measurement matrix has S-REC
whp for sufficient measurements. 

Lemma 2: The optimum of the squared loss minimization 
recovers a zhat close to z* if A has S-REC. 
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Why is the Restricted Eigenvalue Condition (REC) needed?

Lasso solves: 

If there is a sparse vector x in the nullspace of A then this fails. 



Proof technology

Why is the Restricted Eigenvalue Condition (REC) needed?

Lasso solves: 

If there is a sparse vector x in the nullspace of A then this fails.

REC: All approximately k-sparse vectors x are far from the nullspace: 

A vector x is approximately k-sparse if there exists  a set of k coordinates 
S such that 



Proof technology

Unfortunate coincidence: The difference of two k-sparse vectors is 2k 
sparse. 

But the difference of two natural images is not natural. 

The correct way to state REC (That generalizes to our S-REC) is 

For any two k-sparse vectors x1,x2 , their difference is far from the 
nullspace:



Proof technology

Our Set-Restricted Eigenvalue Condition (S-REC). For any set 

A matrix A satisfies S-REC if for all x1, x2 in S 

For any two natural images, their difference is far from the nullspace of 
A: 



Proof technology

Our Set-Restricted Eigenvalue Condition (S-REC). For any set 

A matrix A satisfies S-REC if for all x1, x2 in S 

The difference of two natural images is far from the nullspace of A: 

• Lemma 1: If the set S is the range of a generative model of d-relu
layers then 

• m= O (k d logn) measurements suffice to make a Gaussian iid matrix 
S-REC whp. 

• Lemma 2: If the matrix has S-REC then squared loss optimizer zhat

must be close to z*
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Recovery from linear measurements 

yG(z)z A



Lets focus on A =I (Denoising)

yG(z)z A

But I do not have the right weights w of the generator!

w
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yG(z)z A

But I do not have the right weights w of the generator!
Train over weights w. Keep random z0
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random 
noise 
z

G(z) Noisy x

w1 w2 w3

The fact that an image can be generated by convolutional 
weights applied to some random noise, makes it natural
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DIP-CS vs Lasso

From our recent preprint: 
Compressed Sensing with Deep Image Prior and Learned Regularization



Conclusions and outlook

• Defined compressed sensing for images coming from generative 

models 

• Performs very well for few measurements. Lasso is more accurate for 

many measurements. 

• Ideas: Better loss functions, combination with lasso, using 

discriminator in reconstruction. 

• Theory of compressed sensing nicely extends to S-REC and recovery 

approximation bounds. 

• Algorithm can be applied to non-linear measurements. Can solve 

general inverse problems for differentiable measurements. 

• Plug and play different differentiable boxes ! 

• Better generative models (eg for MRI datasets) can be useful. 

• Deep Image prior can be applied even without a pre-trained GAN

• Idea of differentiable compression seems quite general. 

• Code and pre-trained models:

• https://github.com/AshishBora/csgm

• https://github.com/davevanveen/compsensing_dip

https://github.com/AshishBora/csgm
https://github.com/AshishBora/csgm


fin



Main results

• For general L-Lipschitz functions. 

• Minimize only over z vectors within a ball. 

• Assuming poly(n) bounded weights: L= n O(d) ,δ= 1/n O(d)



Intermezzo

Our algorithm works

even for non-linear measurements. 



Recovery from nonlinear measurements 

yG(z)z

• This recovery method can be applied even for any non-linear 
measurement differentiable box A. 

• Even a mixture of losses: approximate my face but also 
amplify a mustache detector loss. 

A 
(nonlinear operator)
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Using nonlinear measurements 

yG(z)z A 
(Gender detector)

x
Target 
image



Part 4: Dessert 

Adversarial examples in ML 

Using the idea of compressed 

sensing to defend from adversarial 

attacks. 



Lets start with a good cat classifier

85

Pr(cat) 
=0.97



Modify image slightly to maximize Pcat(x)
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Pr(cat) 
=0.01

Move x input to maximize ‘catness’ of x while keeping it close to xcostis

xcostis



Adversarial examples
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Pr(cat) 
=0.998

Move x input to maximize ‘catness’ of x while keeping it close to xcostis

xadv
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1. Moved in the direction 

pointed by cat classifier 

2. Left the manifold of natural 

images

Costis

sort of cats

Cats



Difference from before?

R13000

R100

z1=[1,0,0,..]

z2=[1,2,3,..]

G(z1)

In our previous work we were doing 
gradient descent in z-space so staying 
in the range of the Generator. 

• Suggests that there are no 
adversarial examples in the range 
of the generator

• Shows a way to defend classifiers 
if we have a GAN for the domain: 
simply project on the range before 
classifying. 

• (we have a preprint on that).



Defending using a classifier 

using a GAN

Classifier C

xadv

C(x)

Unprotected classifier with input xadv
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Defending using a classifier 

using a GAN

Classifier C

xadv

C(xproj)

Treating xadv as noisy nonlinear compressed 
sensing observations. Projecting on manifold G(z) 
before feeding in classifier.

xproj

This idea was proposed 

independently by  Samangouei, 

Kabkab and Chellappa

Turns out there are adversarial 

examples even on the manifold G(z) 

(as found in our preprint and 

independently by Athalye, Carlini, 

Wagner) 

Can be made robust using 

adversarial training on the manifold: 

Robust Manifold Defense. 

The Robust Manifold Defense (Arxiv paper) 
Blog post on Approximately Correct on using GANs for defense



CausalGAN
work with Murat Kocaoglu and Chris Snyder, 

Postulate a causal structure on attributes (gender, mustache, long 
hair, etc) 

Create a machine that can sample conditional and interventional 
samples: we call that an implicit causal generative model. 

Adversarial training.

The causal generator seems to allow configurations never seen in 
the dataset (e.g. women with mustaches)



CausalGAN

Gender

Age

Mustache

Bald

Glasses

Image 
Generator

G(z)

extra random bits
z



CausalGAN

Conditioning on Bald=1 vs Intervention (Bald=1) 
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CausalGAN

Conditioning on Mustache=1 vs Intervention (Mustache=1) 



CausalGAN

Conditioning on Mustache=1 vs Intervention (Mustache=1) 


