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Overview: Multi-Arm Bandits

A Model for Dynamic Decision-Making

Constantine Caramanis constantine@utexas.edu UT AustinNon-stationarity and side observations 3 / 58



Overview: Multi-Arm Bandits

Dynamic Decision Making:

Actions: K = {1, . . . ,K}
At time t, play action at ∈ K.
Receive stochastic reward Rt .
Goal: play to maximize expected reward.
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Overview: Multi-Arm Bandits

Which action to play?
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Overview: Multi-Arm Bandits

Exploit: Play action F . (Suboptimal)
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Overview: Multi-Arm Bandits

Exploit: play action with highest empirical reward (Suboptimal)

Need to Explore and Exploit

By now classical problem.

Key idea: Optimism: play arm with highest plausible
reward.
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Overview: Multi-Arm Bandits

Exploit vs Upper Confidence Bound
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Overview: Multi-Arm Bandits

Exploit: play action with highest empirical reward (Suboptimal)

Need to Explore and Exploit

By now classical problem.

Key idea: Optimism: play arm with highest plausible
reward.

(e.g., books by Cesa-Bianchi & Bubeck, Lattimore & Szepasvari)
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Overview: Multi-Arm Bandits

Good news: For classical bandit problems, the UCB algorithm is
near-optimal, efficient to implement, and analytically
well-understood.

Bad news: Many interesting practical problems violate classical
assumptions. UCB no longer optimal.

This talk: two such problems, and their solutions.
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Non-stationarity
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Multi-Armed Bandits

Online learning model for studying the tradeoff between exploration
and exploitation

Set K of k arms or actions

Each i ∈ K: unknown reward distribution of mean µi

T rounds (can be unknown)

At each round t = 1, 2, . . . ,T , a player:
1 Chooses to play an arm i ∈ K
2 Collects the realized reward

Goal: Minimize the regret:

T ·max
i

µi − E[Player’s reward]
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Motivation
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Example 1

Suppose we run a boat-to-rent service in a Greek island

We own a single boat and each “tour” takes 3 hours
At any hour (roughly), a client-type arrives:

“Tourist group” offers $100 (+ tips)
“Romantic couple” offers $50 (+ tips)
“Student” offers $20 (no tips)
“’No client” offers $0

The arrival probability of each type is (empirically) known
Suppose the student arrives . . .

Should we give her/him the boat?
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Example 2

We run a (monetized) question-answering platform (e.g.,
JustAnswers, Quora, Chegg)

k “experts” (mathematician, historian, biologist, polymath)

m “question-types” (math, philosophy, linguistics)

Each expert i needs a fixed amount di of research hours before
answering a question

Each question-type appears with probability fj

For i ∈ [k] and j ∈ [m], let µij be the probability that expert i
gives a satisfactory answer to question-type j

Questions arrive sequentially (e.g., one at each hour)

Goal: Assign each question to a non-busy expert to maximize
the expected number of satisfactory answers
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Example 2

Experts Topic

Mathematician

Physicist

Musician

Music

Biology

Cinema

Math

1

1

0:8

0:7

0:6

0:2
2 hours

1 hour

10 hours
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Problem Definition
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Problem Definition

Model:

Set K of k arms (or actions)

Set C of m contexts

fj ∈ (0, 1): frequency of context j

known to the player∑
j∈C fj = 1

Xij : reward distribution of arm i under context j

unknown mean µij

bounded support in [0, 1]

di ∈ N: delay of arm i

once played, arm i becomes blocked for the next di − 1 rounds
known and deterministic
di = 1 implies no blocking

T : unknown time horizon
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Problem Definition

k arms and m contexts

fj : frequency of context j

di : delay of arm i

µij mean reward of arm i under context j

T : unknown time horizon

At each time t = 1, 2, . . . ,T , the player:

1 Observes the realized context of the round jt ∈ C
2 Chooses an available action i ∈ K

Goal: Maximize the expected cumulative reward over T
rounds
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The Full-Information Problem
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The Full-Information Problem

Suppose that the reward distributions of the arms are known to the
player a priori (and w.l.o.g. deterministic) . . .

. . . what does a “good” strategy look like?
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A (very) simple setting

Single arm of delay d ≫ 1.

Two contexts:

Good: reward µ ≥ 1 and frequency ϵ = 1%
Meh: reward 1 and frequency 1− ϵ = 99%

Intuitively, if µ is close to 1, the optimal policy plays the arm
whenever it is available (under both good and meh) . . .

. . . but once µ≫ 1, the optimal policy plays the arm only under the
good context.

If the frequency of the good context is ϵ, this phase transition
happens exactly at µ = 1 + 1

ϵ(d−1)
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A (very) simple setting

Modeling the optimal policy as a Markov Chain...

: : :

0 d− 1d− 21

1 1 1 1

ǫ+ (1− ǫ)q
1− ǫ− (1− ǫ)q

Each state represents the number of rounds until the arm
becomes available

q : probability of playing the arm under context meh

Expected reward equals π(0) · (ϵµ+ (1− ϵ)q)

We can choose q to maximize the total expected reward
(asymptotically)
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A (very) simple setting

“Greedy” approach: Play the arm whenever it is available

In the above example, for µ≫ 1 + 1
ϵ(d−1)

. . .

The optimal collects on average ϵµ
1+ϵ(d−1)

(in expectation)

The greedy collects on average ϵµ+1−ϵ
d

By setting ϵ = 1
d
, the competitive ratio scales as ≈ 1

d

Takeaways:

“Greedy” doesn’t work

A “good” policy may intentionally skip rounds
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An (asymptotic) LP upper bound

Using Linear Programming to upper bound the optimal expected
reward.

maximize: T ·
∑
i∈K

∑
j∈C

µi ,jzi ,j (LP)

s.t.:
∑
j∈C

zi ,j ≤
1

di
∀i ∈ K (C1)∑

i∈K

zi ,j ≤ fj ∀j ∈ C (C2)

zi ,j ≥ 0 ∀i ∈ K, j ∈ C

Theorem

(LP) yields a
(
1−O(dmax

T
)
)
-approximate upper-bound on the

optimal (clairvoyant w.r.t. context realizations) expected reward
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Online randomized rounding

Natural approach:

1 Compute a solution z∗ to (LP)
2 At each round t = 1, 2, . . .,

1 Observe the context jt of the round
2 Sample an arm i with marginal probability z∗i ,jt/fjt
3 If the sampled arm i is available (not blocked), play it.

Theorem

The above is a dmax

2dmax−1
-competitive policy (asymptotically)
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Unconditional hardness

Theorem

The player cannot collect (in expectation) more than a
dmax

2dmax−1
-fraction of the expected reward of an optimal clairvoyant

policy.

Based on the simple example of 1 arm and 2 contexts

Characterizing the player’s best policy is easy

Characterizing the optimal clairvoyant policy is hard

Key idea: Asymptotically (for T →∞), it suffices to
characterize a near-optimal yet simpler clairvoyant policy
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Remaining Details

Improving some asymptotic details.

Bandit setting: we do not know the means (data for LP) a priori.

“Contextual Blocking Bandits,” Basu, Papadigenopoulos, C.,
Shakkottai; AISTATS 2021.
https://arxiv.org/pdf/2003.03426.pdf
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More General Non-stationarity

Playing a matroid at each round, based on availability (blocking).

“Combinatorial Blocking Bandits with Stochastic Delays,”
Atsidakou, Papadigenopoulos, Basu, C., Shakkottai; ICML 2021
https://arxiv.org/pdf/2105.10625.pdf

“Recurrent Submodular Welfare and Matroid Blocking Bandits,”
Papadigenopoulos, C.; NeurIPS 2021
https://arxiv.org/pdf/2102.00321.pdf

Recharging bandits

“Non-Stationary Bandits under Recharging Payoffs: Improved
Planning with Sublinear Regret,” Papadigenopoulos, C.,
Shakkottai; NeurIPS 2022.
https://arxiv.org/pdf/2205.14790.pdf
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Recharging Bandits

Motivation:

“Absence makes the heart grow fonder”

Examples:
Movie recommendation: cannot watch the same movie every
day (even our favorite one)
Food: some days need to pass to really enjoy our favorite food
again (typically a week)

After playing an action

(mean) payoff temporarily decreases
then (slowly) increases back to a baseline

Standard MAB cannot capture this aspect
Blocking bandits are a special case.
First introduced by Immorlica & Kleinberg 2018.
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Food: some days need to pass to really enjoy our favorite food
again (typically a week)

After playing an action

(mean) payoff temporarily decreases
then (slowly) increases back to a baseline

Standard MAB cannot capture this aspect
Blocking bandits are a special case.
First introduced by Immorlica & Kleinberg 2018.
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Recharging Bandits

Setting:

Set K of n arms
Each i ∈ K has a (mean) payoff function pi (τ)

τ : # of rounds passed since i was last played (called “delay”)
pi (τ) is monotone non-decreasing in τ
Polynomial and known recovery time τmax s.t.

pi (τ) = pi (τmax),∀τ > τmax

Agent plays at most k arms per round (semi-bandit feedback)

For each arm played i (under delay τ), collect a payoff with
mean pi (τ)

Planning: payoff function known (NP-hard in general)
Learning: payoff function initially unknown

Goal: Minimize the ρ-regret for T rounds, where ρ is the
best-known competitive guarantee for planning
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Model: Side observations on a graph
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Full vs Bandit Information
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Full vs Bandit Information
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Side Information

In many applications, information regime is between these two
extremes:

Related products: If you like songs by Tsaous, you may like
songs by Tountas.

Related users: Response by a user on a social network my
provide information on connected users.

etc.
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Side observations on a Graph

G = (K,E ) undirected, unweighted graph

K = {1, ...,K} actions/arms - nodes

Playing an action i yields a stochastic reward Xi of initially
unknown mean µi .

Let Ki : neighbors of node i

At each time t the player plays At and collects (and observes)
XAt (t).
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Side observations on a Graph

G = (K,E ) undirected, unweighted graph

K = {1, ...,K} actions/arms - nodes

Playing an action i yields a stochastic reward Xi of initially
unknown mean µi .

Let Ki : neighbors of node i

At each time t the player plays At and collects (and observes)
XAt (t).

The player also observes Xj(t), ∀j ∈ KAt .

Adversarial setting studied in Mannor & Shamir, 2011.
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Side observations on a Graph

K actions of unknown mean rewards µ1, ..., µK
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Side observations on a Graph

K actions of unknown mean rewards µ1, ..., µK
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Gaussian Bandits with Side Observations

Model (introduced in Wu, György, and Szepesvári 2015):

K Gaussian arms with (unknown) mean rewards (µ1, . . . , µK )

Known feedback matrix Σ = (σi ,j)i ,j∈K
At each round t, by playing an action i ∈ K the player:

collects Xi ,t ∼ N (µi , σ
2
i ,i )

observes Xj ,t ∼ N (µj , σ
2
i ,j) for each arm j ∈ K

(rewards are realized independently)

Objective: Maximize the expected cumulative regret
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Gaussian Bandits with Side Observations

Wu, György, and Szepesvári 2015: provide asymptotically
optimal regret for the special case where σi ,j ∈ {σ,∞} which is
equivalent to Graph-structured feedback.

General case:

Can be modeled as a weighted graph G = (K,E ,Σ)
K = {1, ...,K} actions/nodes
Edge (i , j) has weight σij (can be ∞)
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LP-based Lower Bound

Key Idea:

Need to play each arm enough to distinguish best from second
best (etc.)

In usual setting, we need to play each suboptimal arm:
Ni(t)/σ

2
i ≥ 2/∆2

i times.

Now we need to account for different variances:

∑
j∈[K ]

Nj(t)

σ2
ji

≥ 2/∆2
i .
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LP-based Lower Bound

Can use this to build a lower-bounding LP:

Any algorithm must distinguish strictly suboptimal arms.

Thus if arm j is played cj times, for all i we must have:∑
j∈[K ]

cj
σ2
ji

≥ 2/∆2
i .

The optimal algorithm will accomplish this while minimizing
suboptimality:

∑
i∈K ci∆i(µ)
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LP-based Lower Bound

Formulation: For any reward vector µ ∈ [0,∞)K , we define:

C (µ) =


∑

j∈K
cj
σ2
ji
≥ 2

∆2
i (µ)

,∀i ̸= i∗(µ)

c ∈ [0,∞)K : ∑
j∈K

cj
σ2
ji
≥ 2

∆2
min(µ)

, i = i∗(µ)

 ,

where i∗(µ) = argmaxi∈Kµi , ∆i(µ) = maxj∈K µj − µi , and
∆min(µ) = mini∈K,∆i (µ)>0∆i(µ).

Let the optimal solution:

c∗ = argmin
c∈C(µ)

∑
i∈K

ci∆i(µ).
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LP-based Lower Bound

Theorem

For environment (µ,Σ), the regret of any consistent policy satisfies

lim inf
T→∞

RT (µ)

logT
≥

∑
i∈K

c∗i ∆i(µ).
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LP-based Algorithm

Estimating Empirical Means:

µ̂(t) =
t−1∑
τ=1

Xτ

σ2
iτ

/ t−1∑
τ=1

1

σ2
iτ

=
∑
j∈[K ]

t−1∑
τ=1

Xτ I(iτ = j)

σ2
j

/
ζ(τ),

where: ζ(τ) =
∑

j∈[K ]
Nj (t)

σ2
j
.
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LP-based Algorithm

Algorithm Idea: Estimate the LP and at the same time implement its
solution for exploration.

At each round t, the algorithm performs one of the following:

Greedy exploitation: Play the arm of best estimated reward

Uniform exploration: Ensure C (µ̂) is “close” to C (µ)

LP-dictated exploration: Follow the actions indicated by
(estimated) LP based on C (µ̂)
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LP-based Algorithm

At each round t:

Greedy exploitation: If (N1(t)
log t

, N2(t)
log t

, . . . , NK (t)
log t

) ∈ C (µ̂), then play

it ← argmax
i∈K

µ̂i(t)
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LP-based Algorithm

At each round t:

ne : # exploration rounds (initialized at 0)

Uniform exploration: If (N1(t)
log t

, N2(t)
log t

, . . . , NK (t)
log t

) /∈ C (µ̂) and

min
i∈K

t−1∑
τ=1

1

σ2
iτ i

< o(ne(t)) (not uniformly explored)

then play

it ← argmin
k∈K

σ2
ki , where i = argmin

k∈K

t−1∑
τ=1

1

σ2
iτk

,

and increase ne by 1
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LP-based Algorithm

At each round t:

LP-dictated exploration:

If (N1(t)
log t

, N2(t)
log t

, . . . , NK (t)
log t

) /∈ C (µ̂) and arms uniformly explored, then

Compute c∗(µ̂(t))← argminc∈C(µ̂(t))

∑
i∈K ci∆i(µ̂(t))

Play arm

it = i with Ni(t) < c∗i (µ̂(t)) log t,

and increase ne by 1
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LP-based Algorithm

Theorem

The regret of the above algorithm satisfies

lim sup
T→∞

RT (µ)

logT
≤

∑
j∈K

∆j(µ)c
∗
j (µ) (up to constant factors)
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Omitted Details

“Asymptotically-Optimal Gaussian Bandits with Side Observations,”
Atsidakou, Papadigenopoulos, C., Sanghavi, Shakkottai; ICML 2022
https://proceedings.mlr.press/v162/atsidakou22a.html
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Parting thoughts

Bandits are a well-explored framework.

Classical results critically rely on certain assumptions, such as
stationarity.

Without these, many interesting problems still remain!

constantine@utexas.edu

https://caramanis.github.io/
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