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Overview: Multi-Arm Bandits

A Model for Dynamic Decision-Making
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Overview: Multi-Arm Bandits

Dynamic Decision Making:
@ Actions: £ ={1,...,K}
@ At time t, play action a; € K.
@ Receive stochastic reward R;.
@ Goal: play to maximize expected reward.
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Overview: Multi-Arm Bandits

Which action to play?
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Overview: Multi-Arm Bandits

Which action to play?
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Overview: Multi-Arm Bandits

Which action to play?
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Overview: Multi-Arm Bandits

Which action to play?
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Overview: Multi-Arm Bandits

Which action to play?
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Overview: Multi-Arm Bandits

Exploit: Play action F. (Suboptimal)
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Overview: Multi-Arm Bandits

Exploit: play action with highest empirical reward (Suboptimal)
Need to Explore and Exploit
By now classical problem.

® 6 o o

Key idea: Optimism: play arm with highest plausible
reward.
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Overview: Multi-Arm Bandits

Exploit vs Upper Confidence Bound
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Overview: Multi-Arm Bandits

Exploit: play action with highest empirical reward (Suboptimal)
Need to Explore and Exploit
By now classical problem.

Key idea: Optimism: play arm with highest plausible
reward.

(e.g., books by Cesa-Bianchi & Bubeck, Lattimore & Szepasvari)
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Overview: Multi-Arm Bandits

@ Good news: For classical bandit problems, the UCB algorithm is
near-optimal, efficient to implement, and analytically
well-understood.

@ Bad news: Many interesting practical problems violate classical
assumptions. UCB no longer optimal.

e This talk: two such problems, and their solutions.
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Non-stationarity
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Multi-Armed Bandits

Online learning model for studying the tradeoff between exploration
and exploitation

e Set K of k arms or actions

e Each /i € K: reward distribution of mean p;
@ T rounds (can be unknown)

@ Ateachround t =1,2,..., T, a player.

© Chooses to play an arm i € K
@ Collects the realized reward

: Minimize the regret:

T - max u; — E[Player’s reward]
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Motivation
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Example 1

@ Suppose we run a boat-to-rent service in a Greek island
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Example 1

@ Suppose we run a boat-to-rent service in a Greek island
@ We own a single boat and each “tour” takes 3 hours
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Example 1

@ Suppose we run a boat-to-rent service in a Greek island
@ We own a single boat and each “tour” takes 3 hours

@ At any hour (roughly), a client-type arrives:

“Tourist group” offers $100 (+ tips)

“Romantic couple” offers $50 (+ tips)

“Student” offers $20 (no tips)

“’No client” offers $0
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Example 1

@ Suppose we run a boat-to-rent service in a Greek island
@ We own a single boat and each “tour” takes 3 hours
@ At any hour (roughly), a client-type arrives:
o “Tourist group” offers $100 (+ tips)
e “Romantic couple” offers $50 (+ tips)
e “Student” offers $20 (no tips)
o “’No client” offers $0
@ The arrival probability of each type is (empirically) known
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Example 1
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@ We own a single boat and each “tour” takes 3 hours
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o “Tourist group” offers $100 (+ tips)

e “Romantic couple” offers $50 (+ tips)

e “Student” offers $20 (no tips)
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@ The arrival probability of each type is (empirically) known
@ Suppose the student arrives . ..
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Example 1

@ Suppose we run a boat-to-rent service in a Greek island
@ We own a single boat and each “tour” takes 3 hours
@ At any hour (roughly), a client-type arrives:

o “Tourist group” offers $100 (+ tips)

e “Romantic couple” offers $50 (+ tips)

e “Student” offers $20 (no tips)

o “’No client” offers $0
@ The arrival probability of each type is (empirically) known
@ Suppose the student arrives . ..

Should we give her/him the boat?
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Example 2

@ We run a (monetized) question-answering platform (e.g.,
JustAnswers, Quora, Chegg)

k “experts’ (mathematician, historian, biologist, polymath)

m “question-types” (math, philosophy, linguistics)

Each expert i/ needs a fixed amount d; of research hours before
answering a question

Each question-type appears with probability f;

For i € [k] and j € [m], let u;; be the probability that expert i
gives a satisfactory answer to question-type j

Questions arrive sequentially (e.g., one at each hour)

: Assign each question to a non-busy expert to maximize
the expected number of satisfactory answers
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Example 2

Experts

Math

Mathematician

Music

Physicist

Biology

Musician

Cinema
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Problem Definition
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Problem Definition

Model:
@ Set K of k arms (or actions)
@ Set C of m contexts
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Problem Definition

Model:
@ Set K of k arms (or actions)
@ Set C of m contexts
o f; € (0,1): frequency of context j
e known to the player

° jeCﬂ'Zl
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Problem Definition

Model:
@ Set K of k arms (or actions)
@ Set C of m contexts
o f; € (0,1): frequency of context j
e known to the player
® 2 jec fi=1
e Xj;: reward distribution of arm / under context j

e unknown mean p;
o bounded support in [0, 1]
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Problem Definition

Model:
@ Set K of k arms (or actions)
@ Set C of m contexts
e f; € (0,1): frequency of context j
e known to the player
® 2 jec fi=1
Xjj: reward distribution of arm / under context j

e unknown mean p;
o bounded support in [0, 1]
d; € N: delay of arm /
e once played, arm i becomes blocked for the next d; — 1 rounds
e known and deterministic
e d; =1 implies no blocking
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Problem Definition

Model:
@ Set K of k arms (or actions)
@ Set C of m contexts
e f; € (0,1): frequency of context j
e known to the player
® 2 jec fi=1
Xjj: reward distribution of arm / under context j

e unknown mean p;
o bounded support in [0, 1]
d; € N: delay of arm /
e once played, arm i becomes blocked for the next d; — 1 rounds
e known and deterministic
e d; =1 implies no blocking

@ T: unknown time horizon
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Problem Definition

k arms and m contexts
fi: frequency of context j
d;: delay of arm /

ij mean reward of arm / under context j

® 6 6 o o

T: unknown time horizon

At each time t =1,2,..., T, the player:
@ Observes the realized context of the round j; € C

@ Chooses an available action i € K
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Problem Definition

k arms and m contexts
fi: frequency of context j
d;: delay of arm /

ij mean reward of arm / under context j

® 6 6 o o

T: unknown time horizon

At each time t =1,2,..., T, the player:
@ Observes the realized context of the round j; € C

@ Chooses an available action i € K

: Maximize the expected cumulative reward over T
rounds
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The Full-Information Problem

OB ENNENEETET ENIEIGIE ENNNECTIERRE  Non-stationarity and side observations 24 /58



The Full-Information Problem

Suppose that the reward distributions of the arms are known to the
player a priori (and w.l.0.g. deterministic) . ..
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A (very) simple setting

@ Single arm of delay d > 1.
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A (very) simple setting

@ Single arm of delay d > 1.
@ Two contexts:
e Good: reward p > 1 and frequency € = 1%
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A (very) simple setting

@ Single arm of delay d > 1.
@ Two contexts:

e Good: reward p > 1 and frequency € = 1%
o Meh: reward 1 and frequency 1 — e = 99%

OB ENNENEETET ENIEIGIE ENMNECHIERRE  Non-stationarity and side observations 26 /58



A (very) simple setting

of delay d > 1.

° . reward p > 1 and frequency € = 1%
o Meh: reward 1 and frequency 1 — ¢ = 99%

Intuitively, if u is close to 1, the optimal policy plays the arm
whenever it is available (under both and meh) ...
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A (very) simple setting

of delay d > 1.

° . reward p > 1 and frequency € = 1%
o Meh: reward 1 and frequency 1 — ¢ = 99%

Intuitively, if u is close to 1, the optimal policy plays the arm
whenever it is available (under both and meh) ...

...but once it > 1, the optimal policy plays the arm only under the
context.
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A (very) simple setting

of delay d > 1.

° . reward p > 1 and frequency € = 1%
o Meh: reward 1 and frequency 1 — ¢ = 99%

Intuitively, if u is close to 1, the optimal policy plays the arm
whenever it is available (under both and meh) ...

...but once it > 1, the optimal policy plays the arm only under the
context.

If the frequency of the context is ¢, this phase transition
happens exactly at 1 =1+ 6(d_l_l)
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A (very) simple setting

Modeling the optimal policy as a Markov Chain...

e+ (1—e)q

l—e—(1—-¢€)q
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A (very) simple setting

Modeling the optimal policy as a Markov Chain...

e+ (1—e)q

l—e—(1—-¢€)q

@ Each state represents the

@ g : probability of playing the arm under context meh
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A (very) simple setting

Modeling the optimal policy as a Markov Chain...

e+ (1—e)q

l—e—(1—-¢€)q

@ Each state represents the

@ g : probability of playing the arm under context meh
@ Expected reward equals
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A (very) simple setting

Modeling the optimal policy as a Markov Chain...

e+ (1—e)q

l—e—(1—-¢€)q

@ Each state represents the

@ g : probability of playing the arm under context meh

@ Expected reward equals

@ We can choose g to maximize the total expected reward
(asymptotically)
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A (very) simple setting

: Play the arm whenever it is available

In the above example, for © > 1+ E(d 1)

@ The optimal collects on average in expectation)

Ite (d i) (

ep+l—e
@ The greedy collects on average 5 —

Q|+~

@ By setting ¢ = %, the competitive ratio scales as ~
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A (very) simple setting

: Play the arm whenever it is available

In the above example, for © > 1+ E(d 1)

@ The optimal collects on average in expectation)

Ite (d i) (

ep+l—e
@ The greedy collects on average 5 —

Q|+~

@ By setting ¢ = %, the competitive ratio scales as ~

@ “Greedy” doesn't work
@ A “good” policy may
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An (asymptotic) LP upper bound

Using Linear Programming to upper bound the optimal expected
reward.

OB ENNENEETET ENIEISIE ENNNECTIERRE  Non-stationarity and side observations 29 /58



An (asymptotic) LP upper bound

Using Linear Programming to upper bound the optimal expected
reward.

maximize: T - Z Z Wi jZi | (LP)

ek jeC
1
sti Y z; <o Vie K (C1)
jec i
» zy<f vjec (C2)
ek
zi; >0 VieK,jel
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An (asymptotic) LP upper bound

Using Linear Programming to upper bound the optimal expected

reward.
maximize: T - Z Z,u,-d-z,-d- (LP)
ek jeC
1 .
s.t.: Zz,,- < a Vie K (C1)
jec
» zy<f vjec (C2)
iek
Zi,jZO VI.EIC,_].EC
Theorem

(LP) yields a (1 — O(d%fx))-approximate upper-bound on the
optimal (clairvoyant w.r.t. context realizations) expected reward

=
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Online randomized rounding

@ Compute a solution z* to (LP)
Q@ Ateachround t =1,2,...,

@ Observe the context j; of the round
@ Sample an arm i with marginal probability z;jjt/ﬂt
© If the sampled arm i is available (not blocked), play it.
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Online randomized rounding

@ Compute a solution z* to (LP)
Q@ Ateachround t =1,2,...,

@ Observe the context j; of the round
@ Sample an arm i with marginal probability z;tjt/ﬂ-t
© If the sampled arm i is available (not blocked), play it.

%-campetitive policy (asymptotically)

24,

Theorem
The above is a J
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Unconditional hardness

Theorem

The player cannot collect (in expectation) more than a

dmax

T < -fraction of the expected reward of an optimal clairvoyant
policy.
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Unconditional hardness

Theorem

The player cannot collect (in expectation) more than a

dmax

T < -fraction of the expected reward of an optimal clairvoyant
policy.

@ Based on the simple example of 1 arm and 2 contexts
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Unconditional hardness

Theorem

The player cannot collect (in expectation) more than a

dmax

T < -fraction of the expected reward of an optimal clairvoyant
policy.

@ Based on the simple example of 1 arm and 2 contexts

o Characterizing the player’'s best policy is easy

OB ENNENEETET ENIEIGIE ENNNECIIERRE  Non-stationarity and side observations 31/58



Unconditional hardness

Theorem

The player cannot collect (in expectation) more than a

dmax

T < -fraction of the expected reward of an optimal clairvoyant
policy.

@ Based on the simple example of 1 arm and 2 contexts
o Characterizing the player’'s best policy is easy

@ Characterizing the optimal clairvoyant policy is hard
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Unconditional hardness

Theorem

The player cannot collect (in expectation) more than a

dmax

T < -fraction of the expected reward of an optimal clairvoyant
policy.

@ Based on the simple example of 1 arm and 2 contexts
o Characterizing the player’'s best policy is easy
@ Characterizing the optimal clairvoyant policy is hard

° : Asymptotically (for T — 00), it suffices to
characterize a near-optimal yet simpler clairvoyant policy
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Remaining Details

@ Improving some asymptotic details.
e Bandit setting: we do not know the means (data for LP) a priori.

@ “Contextual Blocking Bandits,” Basu, Papadigenopoulos, C.,
Shakkottai; AISTATS 2021.
https://arxiv.org/pdf/2003.03426.pdf
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https://arxiv.org/pdf/2003.03426.pdf

More General Non-stationarity

Playing a matroid at each round, based on availability (blocking).

@ “Combinatorial Blocking Bandits with Stochastic Delays,”
Atsidakou, Papadigenopoulos, Basu, C., Shakkottai; ICML 2021
https://arxiv.org/pdf/2105.10625.pdf

@ “Recurrent Submodular Welfare and Matroid Blocking Bandits,
Papadigenopoulos, C.; NeurlPS 2021
https://arxiv.org/pdf/2102.00321.pdf

n

Recharging bandits

@ “Non-Stationary Bandits under Recharging Payoffs: Improved
Planning with Sublinear Regret,” Papadigenopoulos, C.,
Shakkottai; NeurlPS 2022.
https://arxiv.org/pdf/2205.14790.pdf
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Recharging Bandits

@ Motivation:
o “Absence makes the heart grow fonder’
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Recharging Bandits

@ Motivation:
e “Absence makes the heart grow fonder’
o Examples:
@ Movie recommendation: cannot watch the same movie every
day (even our favorite one)
o Food: some days need to pass to really enjoy our favorite food
again (typically a week)
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Recharging Bandits

o Motivation:

e “Absence makes the heart grow fonder’
o Examples:
@ Movie recommendation: cannot watch the same movie every
day (even our favorite one)
o Food: some days need to pass to really enjoy our favorite food
again (typically a week)
After playing an action
o (mean) payoff temporarily decreases
o then (slowly) increases back to a baseline

Standard MAB cannot capture this aspect
Blocking bandits are a special case.
First introduced by Immorlica & Kleinberg 2018.
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Recharging Bandits

@ Setting:

o Set IC of n arms
o Each i € K has a (mean) payoff function p;(7)

o 7: # of rounds passed since i was last played (called “delay”)
e p;i(7) is monotone non-decreasing in T
@ Polynomial and known recovery time Tpax S.t.

pi(T) = pi(Tmax)av’r > Tmax
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Recharging Bandits

@ Setting:
o Set IC of n arms
o Each i € K has a (mean) payoff function p;(7)

o 7: # of rounds passed since i was last played (called “delay”)
e p;i(7) is monotone non-decreasing in T
@ Polynomial and known recovery time Tpax S.t.

pi(T) = pi(Tmax)av’r > Tmax

o Agent plays at most k arms per round (semi-bandit feedback)

o For each arm played i (under delay 7), collect a payoff with
mean p;(T)
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Recharging Bandits

@ Setting:
Set IC of n arms
Each i € K has a (mean) payoff function p;(7)
o 7: # of rounds passed since i was last played (called “delay”)

e p;i(7) is monotone non-decreasing in T
@ Polynomial and known recovery time Tpax S.t.

,D,'(T) = pi(Tmax)av’r > Tmax

Agent plays at most k arms per round (semi-bandit feedback)

o For each arm played i (under delay 7), collect a payoff with
mean p;(T)

Planning: payoff function known (NP-hard in general)
Learning: payoff function initially unknown

@ Goal: Minimize the p-regret for T rounds, where p is the
best-known competitive guarantee for planning
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Model: Side observations on a graph J
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Full vs Bandit Information
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Full vs Bandit Information

9° 0

e].

v,
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Side Information

In many applications, information regime is between these two
extremes:

@ Related products: If you like songs by Tsaous, you may like
songs by Tountas.

@ Related users: Response by a user on a social network my
provide information on connected users.

@ etc.
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Side observations on a Graph

e G = (K, E) undirected, unweighted graph
e K ={1,...,K} actions/arms - nodes

@ Playing an action / yields a stochastic reward X; of initially
unknown mean ;.

Let K;: neighbors of node /

@ At each time t the player plays A; and collects (and observes)
Xa, ().
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Side observations on a Graph

e G = (K, E) undirected, unweighted graph
e K ={1,...,K} actions/arms - nodes

@ Playing an action / yields a stochastic reward X; of initially
unknown mean ;.

Let IC;: neighbors of node i
@ At each time t the player plays A; and collects (and observes)
Xa, ().
@ The player also observes Xj(t), Vj € Ka,.
@ Adversarial setting studied in Mannor & Shamir, 2011.
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Side observations on a Graph

K actions of unknown mean rewards jiq, ..., ik
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Side observations on a Graph

K actions of unknown mean rewards jiq, ..., ik
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Side observations on a Graph

K actions of unknown mean rewards jiq, ..., ik
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Gaussian Bandits with Side Observations

Model (introduced in Wu, Gydrgy, and Szepesvéri 2015):
e K Gaussian arms with (unknown) mean rewards (u, . .., fik)
@ Known feedback matrix X = (0;;)ijex
@ At each round t, by playing an action i € K the player:
o collects X; ¢+ ~ N (pi,0?;)
e observes Xj: ~ N(uj, U,zu) for each arm j € K
o (rewards are realized independently)

Objective: Maximize the expected cumulative regret
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Gaussian Bandits with Side Observations

@ Wu, Gyorgy, and Szepesvari 2015: provide asymptotically
optimal regret for the special case where o;; € {0, 00} which is
equivalent to Graph-structured feedback.

General case:
@ Can be modeled as a weighted graph G = (K, E, X)
e K ={1,..., K} actions/nodes
e Edge (/,/) has weight o (can be c0)
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LP-based Lower Bound

Key Idea:

@ Need to play each arm enough to distinguish best from second
best (etc.)

@ In usual setting, we need to play each suboptimal arm:
N;(t)/o? > 2/A? times.

@ Now we need to account for different variances:
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> i) > 2/

2
jelk)
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LP-based Lower Bound

Can use this to build a lower-bounding LP:
@ Any algorithm must distinguish strictly suboptimal arms.

@ Thus if arm j is played ¢; times, for all i we must have:
G 2
jelk] !

@ The optimal algorithm will accomplish this while minimizing
suboptimality: >, ¢iA;(1)
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LP-based Lower Bound

K we define:

7 (1)

Formulation: For any reward vector p € [0, 00)

2jex

c € ]0,00)% :
2jex 5 C’z > Azmm( o =17

— u;, and

‘::qml‘\q
|

Cu) =

where i*(p1) = argmax;cicpi, Ai(1) = maxjex 14
Amin(1t) = minjeie a0 Ai(1)-

Let the optimal solution:

¢’ = argmin
c€C(n) ek

Gi;(f1)-

49 /58

Non-stationarity and side observations

Constantine Caramanis constantine@utexas.q



LP-based Lower Bound

Theorem
For environment (11, X), the regret of any consistent policy satisfies

I|rrl>|orlf IogT _;CA
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LP-based Algorithm

Estimating Empirical Means:
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LP-based Algorithm

Algorithm ldea: Estimate the LP and at the same time implement its
solution for exploration.

At each round t, the algorithm performs one of the following:
@ Greedy exploitation: Play the arm of best estimated reward
e Uniform exploration: Ensure C(1i) is “close” to C(u)

o | P-dictated exploration: Follow the actions indicated by
(estimated) LP based on C(jz)
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LP-based Algorithm

At each round t:

Ni(t) No(t) Nk (t)

Greedy exploitation: If ( gt Togt’ " Togt

) € C(1z), then play

iy + arg max wi(t)
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LP-based Algorithm

At each round t:

ne: # exploration rounds (initialized at 0)

Uniform exploration: If (2 () Iogt D) ¢ C(7i) and

t—1
min
iek

=1

then play

logt? logt?" " "

1

O-ITI

ne(t)) (not uniformly explored)

=1
Iy < arg m|n 0%, where i = arg min —,
ek kek lof
r=1 ik

and increase n. by 1
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LP-based Algorithm

At each round t:

LP-dictated exploration:

If (M Iogt ) ’I\fg(tt), c ’Ygg?) ¢ C(p) and arms uniformly explored, then

o Compute c*(7u(t)) < arg mincecguce)) e GiAI(1(t))
@ Play arm

i = i with N;(t) < ¢/ (u(t))log t,

and increase n. by 1

OB ENNENEETET ENIEIGIE ENMNECHIERRE  Non-stationarity and side observations 55 /58



LP-based Algorithm

Theorem
The regret of the above algorithm satisfies

R (
limsup —— | _,_ < ZA ()ci (1) (up to constant factors)
og

T—o00 jex
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Omitted Details

“Asymptotically-Optimal Gaussian Bandits with Side Observations,”
Atsidakou, Papadigenopoulos, C., Sanghavi, Shakkottai; ICML 2022
https://proceedings.mlr.press/v162/atsidakou22a.html
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Parting thoughts

e Bandits are a well-explored framework.

o Classical results critically rely on certain assumptions, such as
stationarity.

@ Without these, many interesting problems still remain!

constantine@utexas.edu
https://caramanis.github.io/
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