Bandits: Non-stationarity and side observations

Constantine Caramanis constantine@utexas.edu UT Austin Alexia Atsidakou Soumya Basu Orestis Papadigenopoulos Sujay Sanghavi Sanjay Shakkottai

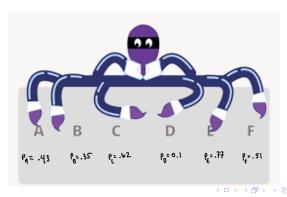
・ 何 ト ・ ヨ ト ・ ヨ ト

A Model for Dynamic Decision-Making

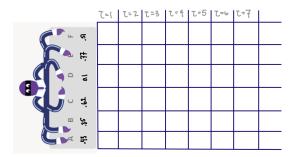
A B A A B A

Dynamic Decision Making:

- Actions: $\mathcal{K} = \{1, \dots, K\}$
- At time t, play action $a_t \in \mathcal{K}$.
- Receive stochastic reward R_t .
- Goal: play to maximize expected reward.



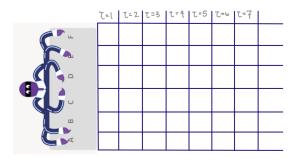
Which action to play?



э

イロト イボト イヨト イヨト

Which action to play?



э

イロト イボト イヨト イヨト

Which action to play?

	1=5	l-2	£≏3	7-4	τ∘5	J=6	7=7	
	1	о	0	1	1	0	1	
	1	0	1	1	0	1	1	
	0	0	0	0	1	0	о	
	1	0	о	1	1	0	1	
—	o	1	1	1	0	0	0	
C	0	0	1	0	1	1	1	

< □ > < □ > < □ > < □ > < □ > < □ >

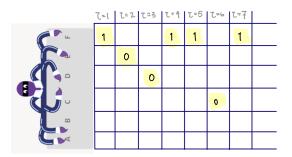
Which action to play?

	1~5	l=2	Z23	l-4	τ∘5	J=6	7°7	
	1	0	0	1	1	0	1	
	1	0	1	1	0	1	1	
	ο	0	0	0	1	0	О	
	1	0	0	1	1	0	1	
	Ø	1	1	1	ο	0	0	
	0	0	1	0	1	1	1	

э

イロト イポト イヨト イヨト

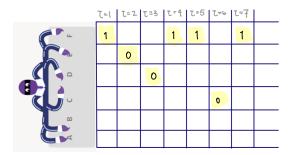
Which action to play?



э

イロト イボト イヨト イヨト

Exploit: Play action F. (Suboptimal)

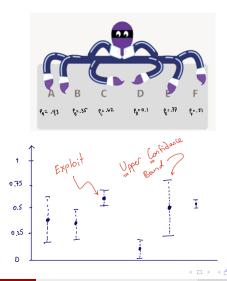


3

イロト イボト イヨト イヨト

- Exploit: play action with highest empirical reward (Suboptimal)
- Need to Explore and Exploit
- By now classical problem.
- Key idea: Optimism: play arm with highest plausible reward.

Exploit vs Upper Confidence Bound



- Exploit: play action with highest empirical reward (Suboptimal)
- Need to Explore and Exploit
- By now classical problem.
- Key idea: Optimism: play arm with highest plausible reward.
- (e.g., books by Cesa-Bianchi & Bubeck, Lattimore & Szepasvari)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Good news: For classical bandit problems, the UCB algorithm is near-optimal, efficient to implement, and analytically well-understood.
- Bad news: Many interesting practical problems violate classical assumptions. UCB no longer optimal.
- This talk: two such problems, and their solutions.

Non-stationarity

э

<ロト < 四ト < 三ト < 三ト

Multi-Armed Bandits

Online learning model for studying the tradeoff between exploration and exploitation

- Set \mathcal{K} of k arms or actions
- Each $i \in \mathcal{K}$: unknown reward distribution of mean μ_i
- T rounds (can be unknown)
- At each round $t = 1, 2, \ldots, T$, a *player*.
 - **1** Chooses to play an arm $i \in \mathcal{K}$
 - Ollects the realized reward
- **Goal**: Minimize the *regret*:

$$T \cdot \max_{i} \mu_{i} - \mathbb{E}[\mathsf{Player's reward}]$$

Motivation

Constantine Caramanis constantine@utexas.e Non-stationarity and side observations

2

イロト イヨト イヨト イヨト

• Suppose we run a boat-to-rent service in a Greek island

э

・ 同 ト ・ ヨ ト ・ ヨ ト

- Suppose we run a boat-to-rent service in a Greek island
- We own a single boat and each "tour" takes 3 hours

.

- Suppose we run a boat-to-rent service in a Greek island
- We own a single boat and each "tour" takes 3 hours
- At any hour (roughly), a client-type arrives:
 - "Tourist group" offers \$100 (+ tips)
 - "Romantic couple" offers \$50 (+ tips)
 - "Student" offers \$20 (no tips)
 - "'No client" offers \$0

- Suppose we run a boat-to-rent service in a Greek island
- We own a single boat and each "tour" takes 3 hours
- At any hour (roughly), a client-type arrives:
 - "Tourist group" offers \$100 (+ tips)
 - "Romantic couple" offers \$50 (+ tips)
 - "Student" offers \$20 (no tips)
 - "'No client" offers \$0

• The arrival probability of each type is (empirically) known

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Suppose we run a boat-to-rent service in a Greek island
- We own a single boat and each "tour" takes 3 hours
- At any hour (roughly), a client-type arrives:
 - "Tourist group" offers \$100 (+ tips)
 - "Romantic couple" offers \$50 (+ tips)
 - "Student" offers \$20 (no tips)
 - "'No client" offers \$0
- The arrival probability of each type is (empirically) known
- Suppose the *student* arrives . . .

- 4 回 ト 4 ヨ ト 4 ヨ ト

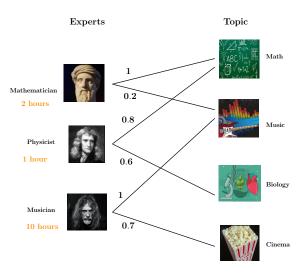
- Suppose we run a boat-to-rent service in a Greek island
- We own a single boat and each "tour" takes 3 hours
- At any hour (roughly), a client-type arrives:
 - "Tourist group" offers \$100 (+ tips)
 - "Romantic couple" offers \$50 (+ tips)
 - "Student" offers \$20 (no tips)
 - "No client" offers \$0
- The arrival probability of each type is (empirically) known
- Suppose the *student* arrives . . .

Should we give her/him the boat?

- We run a (monetized) question-answering platform (e.g., JustAnswers, Quora, Chegg)
- k "experts" (mathematician, historian, biologist, polymath)
- *m* "question-types" (math, philosophy, linguistics)
- Each expert *i* needs a fixed amount *d_i* of research hours before answering a question
- Each question-type appears with probability f_i
- For i ∈ [k] and j ∈ [m], let µ_{ij} be the probability that expert i gives a satisfactory answer to question-type j
- Questions arrive sequentially (e.g., one at each hour)
- Goal: Assign each question to a non-busy expert to maximize the expected number of satisfactory answers

3

・ロト ・ 同ト ・ ヨト ・ ヨト



20 / 58

2

э

イロト イポト イヨト イヨト

Model:

- Set \mathcal{K} of k arms (or actions)
- Set \mathcal{C} of m contexts

э

< □ > < □ > < □ > < □ > < □ > < □ >

Model:

- Set \mathcal{K} of k arms (or actions)
- Set \mathcal{C} of m contexts
- $f_j \in (0,1)$: frequency of context j
 - known to the player

•
$$\sum_{j\in\mathcal{C}} f_j = 1$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Model:

- Set \mathcal{K} of k arms (or actions)
- Set \mathcal{C} of m contexts
- $f_j \in (0,1)$: frequency of context j
 - known to the player
 - $\sum_{j\in\mathcal{C}} f_j = 1$
- X_{ij} : reward distribution of arm *i* under context *j*
 - unknown mean μ_{ij}
 - \bullet bounded support in [0,1]

A (1) < A (1) < A (1) </p>

Model:

- Set \mathcal{K} of k arms (or *actions*)
- Set \mathcal{C} of m contexts
- $f_j \in (0,1)$: frequency of context j
 - known to the player
 - $\sum_{j\in\mathcal{C}} f_j = 1$
- \mathcal{X}_{ij} : reward distribution of arm *i* under context *j*
 - unknown mean μ_{ij}
 - \bullet bounded support in $\left[0,1\right]$
- $d_i \in \mathbb{N}$: delay of arm i
 - once played, arm i becomes blocked for the next $d_i 1$ rounds
 - known and deterministic
 - $d_i = 1$ implies no blocking

く 何 ト く ヨ ト く ヨ ト

Model:

- Set \mathcal{K} of k arms (or *actions*)
- Set \mathcal{C} of m contexts
- $f_j \in (0,1)$: frequency of context j
 - known to the player
 - $\sum_{j\in\mathcal{C}} f_j = 1$
- X_{ij} : reward distribution of arm *i* under context *j*
 - unknown mean μ_{ij}
 - \bullet bounded support in [0,1]
- $d_i \in \mathbb{N}$: delay of arm i
 - $\bullet\,$ once played, arm i becomes blocked for the next d_i-1 rounds
 - known and deterministic
 - $d_i = 1$ implies no blocking
- T: unknown time horizon

- k arms and m contexts
- f_j : frequency of context j
- d_i: delay of arm i
- μ_{ij} mean reward of arm *i* under context *j*
- T: unknown time horizon

At each time $t = 1, 2, \ldots, T$, the player:

- **①** Observes the realized context of the round $j_t \in C$
- 2 Chooses an available action $i \in \mathcal{K}$

- k arms and m contexts
- *f_j*: frequency of context *j*
- d_i: delay of arm i
- μ_{ij} mean reward of arm *i* under context *j*
- T: unknown time horizon

At each time t = 1, 2, ..., T, the player:

- **①** Observes the realized context of the round $j_t \in C$
- 2 Chooses an available action $i \in \mathcal{K}$

Goal: Maximize the expected cumulative reward over *T* rounds

The Full-Information Problem

< □ > < 同 > < 回 > < 回 > < 回 >

Suppose that the reward distributions of the arms are known to the player a priori (and w.l.o.g. deterministic) ...

... what does a "good" strategy look like?

A (very) simple setting

• Single arm of delay $d \gg 1$.

э

イロト イボト イヨト イヨト

- Single arm of delay $d \gg 1$.
- Two contexts:
 - Good: reward $\mu \geq 1$ and frequency $\epsilon = 1\%$

э

イロト 不得 トイヨト イヨト

- Single arm of delay $d \gg 1$.
- Two contexts:
 - Good: reward $\mu \geq 1$ and frequency $\epsilon = 1\%$
 - Meh: reward 1 and frequency $1 \epsilon = 99\%$

< □ > < □ > < □ > < □ > < □ > < □ >

- Single arm of delay $d \gg 1$.
- Two contexts:
 - Good: reward $\mu \geq 1$ and frequency $\epsilon = 1\%$
 - Meh: reward 1 and frequency $1 \epsilon = 99\%$

Intuitively, if μ is close to 1, the optimal policy plays the arm whenever it is available (under *both* good and meh) ...

- 4 回 ト 4 三 ト 4 三 ト

- Single arm of delay $d \gg 1$.
- Two contexts:
 - Good: reward $\mu \geq 1$ and frequency $\epsilon = 1\%$
 - Meh: reward 1 and frequency $1 \epsilon = 99\%$

Intuitively, if μ is close to 1, the optimal policy plays the arm whenever it is available (under *both* good and meh) ...

... but once $\mu \gg 1$, the optimal policy plays the arm *only* under the good context.

ヘロト 人間 ト イヨト イヨト

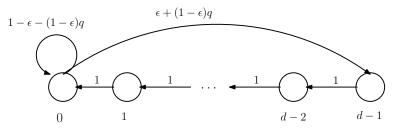
- Single arm of delay $d \gg 1$.
- Two contexts:
 - Good: reward $\mu \geq 1$ and frequency $\epsilon = 1\%$
 - Meh: reward 1 and frequency $1 \epsilon = 99\%$

Intuitively, if μ is close to 1, the optimal policy plays the arm whenever it is available (under *both* good and meh) ...

... but once $\mu \gg 1$, the optimal policy plays the arm *only* under the good context.

If the frequency of the good context is ϵ , this phase transition happens exactly at $\mu=1+\frac{1}{\epsilon(d-1)}$

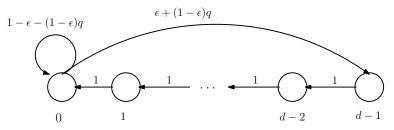
Modeling the optimal policy as a Markov Chain...



э

(日)

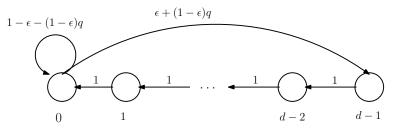
Modeling the optimal policy as a Markov Chain...



- Each state represents the number of rounds until the arm becomes available
- q : probability of playing the arm under context meh

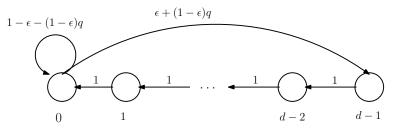
・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Modeling the optimal policy as a Markov Chain...



- Each state represents the number of rounds until the arm becomes available
- q : probability of playing the arm under context meh
- Expected reward equals $\pi(0) \cdot (\epsilon \mu + (1 \epsilon)q)$

Modeling the optimal policy as a Markov Chain...



- Each state represents the number of rounds until the arm becomes available
- q : probability of playing the arm under context meh
- Expected reward equals $\pi(0) \cdot (\epsilon \mu + (1 \epsilon)q)$
- We can choose *q* to maximize the total expected reward (asymptotically)

(本語) ト (本語) ト (本語) ト

"Greedy" approach: Play the arm whenever it is available

In the above example, for $\mu \gg 1 + rac{1}{\epsilon(d-1)} \dots$

- The optimal collects on average $\frac{\epsilon\mu}{1+\epsilon(d-1)}$ (in expectation)
- The greedy collects on average $\frac{\epsilon \mu + 1 \epsilon}{d}$
- By setting $\epsilon = \frac{1}{d}$, the competitive ratio scales as $\approx \frac{1}{d}$

- ロ ト - (周 ト - (日 ト - (日 ト -)日

"Greedy" approach: Play the arm whenever it is available

In the above example, for $\mu \gg 1 + rac{1}{\epsilon(d-1)} \dots$

- The optimal collects on average $\frac{\epsilon\mu}{1+\epsilon(d-1)}$ (in expectation)
- The greedy collects on average $\frac{\epsilon\mu+1-\epsilon}{d}$
- By setting $\epsilon = \frac{1}{d}$, the competitive ratio scales as $\approx \frac{1}{d}$

Takeaways:

- "Greedy" doesn't work
- A "good" policy may *intentionally* skip rounds

ヘロト 不得 トイヨト イヨト 二日

An (asymptotic) LP upper bound

Using Linear Programming to upper bound the optimal expected reward.

イロト 不得 ト イヨト イヨト

An (asymptotic) LP upper bound

Using Linear Programming to upper bound the optimal expected reward.

maximize:
$$T \cdot \sum_{i \in \mathcal{K}} \sum_{j \in \mathcal{C}} \mu_{i,j} z_{i,j}$$
(LP)s.t.: $\sum_{j \in \mathcal{C}} z_{i,j} \leq \frac{1}{d_i}$ $\forall i \in \mathcal{K}$ (C1) $\sum_{i \in \mathcal{K}} z_{i,j} \leq f_j$ $\forall j \in \mathcal{C}$ (C2) $z_{i,j} \geq 0$ $\forall i \in \mathcal{K}, j \in \mathcal{C}$

An (asymptotic) LP upper bound

Using Linear Programming to upper bound the optimal expected reward.

maximize:
$$T \cdot \sum_{i \in \mathcal{K}} \sum_{j \in \mathcal{C}} \mu_{i,j} z_{i,j}$$
(LP)s.t.: $\sum_{j \in \mathcal{C}} z_{i,j} \leq \frac{1}{d_i}$ $\forall i \in \mathcal{K}$ (C1) $\sum_{i \in \mathcal{K}} z_{i,j} \leq f_j$ $\forall j \in \mathcal{C}$ (C2) $z_{i,j} \geq 0$ $\forall i \in \mathcal{K}, j \in \mathcal{C}$

Theorem

(LP) yields a $(1 - O(\frac{d_{max}}{T}))$ -approximate upper-bound on the optimal (clairvoyant w.r.t. context realizations) expected reward

Online randomized rounding

Natural approach:

- Compute a solution z^* to (**LP**)
- 2 At each round $t = 1, 2, \ldots$,
 - Observe the context j_t of the round
 - **2** Sample an arm *i* with marginal probability $z_{i,i_t}^*/f_{j_t}$
 - If the sampled arm *i* is available (not blocked), play it.

Online randomized rounding

Natural approach:

- Compute a solution z* to (LP)
- 2 At each round $t = 1, 2, \ldots$,
 - Observe the context j_t of the round
 - ② Sample an arm *i* with marginal probability $z_{i,i_t}^*/f_{j_t}$
 - If the sampled arm i is available (not blocked), play it.

Theorem

The above is a $\frac{d_{\max}}{2d_{\max}-1}$ -competitive policy (asymptotically)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

The player cannot collect (in expectation) more than a $\frac{d_{\text{max}}}{2d_{\text{max}}-1}$ -fraction of the expected reward of an optimal clairvoyant policy.

Theorem

The player cannot collect (in expectation) more than a $\frac{d_{\text{max}}}{2d_{\text{max}}-1}$ -fraction of the expected reward of an optimal clairvoyant policy.

• Based on the simple example of 1 arm and 2 contexts

Theorem

The player cannot collect (in expectation) more than a $\frac{d_{\text{max}}}{2d_{\text{max}}-1}$ -fraction of the expected reward of an optimal clairvoyant policy.

- Based on the simple example of 1 arm and 2 contexts
- Characterizing the player's best policy is easy

Theorem

The player cannot collect (in expectation) more than a $\frac{d_{\text{max}}}{2d_{\text{max}}-1}$ -fraction of the expected reward of an optimal clairvoyant policy.

- Based on the simple example of 1 arm and 2 contexts
- Characterizing the player's best policy is easy
- Characterizing the optimal clairvoyant policy is hard

Theorem

The player cannot collect (in expectation) more than a $\frac{d_{\text{max}}}{2d_{\text{max}}-1}$ -fraction of the expected reward of an optimal clairvoyant policy.

- Based on the simple example of 1 arm and 2 contexts
- Characterizing the player's best policy is easy
- Characterizing the optimal clairvoyant policy is hard
- Key idea: Asymptotically (for $T \to \infty$), it suffices to characterize a *near-optimal* yet simpler clairvoyant policy

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣

- Improving some asymptotic details.
- Bandit setting: we do not know the means (data for LP) a priori.
- "Contextual Blocking Bandits," Basu, Papadigenopoulos, C., Shakkottai; AISTATS 2021. https://arxiv.org/pdf/2003.03426.pdf

<日

<</p>

More General Non-stationarity

Playing a matroid at each round, based on availability (blocking).

- "Combinatorial Blocking Bandits with Stochastic Delays," Atsidakou, Papadigenopoulos, Basu, C., Shakkottai; ICML 2021 https://arxiv.org/pdf/2105.10625.pdf
- "Recurrent Submodular Welfare and Matroid Blocking Bandits," Papadigenopoulos, C.; NeurIPS 2021 https://arxiv.org/pdf/2102.00321.pdf

Recharging bandits

 "Non-Stationary Bandits under Recharging Payoffs: Improved Planning with Sublinear Regret," Papadigenopoulos, C., Shakkottai; NeurIPS 2022. https://arxiv.org/pdf/2205.14790.pdf

< 日 > < 同 > < 三 > < 三 > <

- Motivation:
 - "Absence makes the heart grow fonder"

イロト イポト イヨト イヨト

- Motivation:
 - "Absence makes the heart grow fonder"
 - Examples:
 - Movie recommendation: cannot watch the same movie every day (even our favorite one)
 - Food: some days need to pass to really enjoy our favorite food again (typically a week)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Motivation:
 - "Absence makes the heart grow fonder"
 - Examples:
 - Movie recommendation: cannot watch the same movie every day (even our favorite one)
 - Food: some days need to pass to really enjoy our favorite food again (typically a week)
 - After playing an action
 - (mean) payoff temporarily decreases
 - then (slowly) increases back to a baseline
 - Standard MAB cannot capture this aspect
 - Blocking bandits are a special case.
 - First introduced by Immorlica & Kleinberg 2018.

< 同 > < 三 > < 三 >

- Setting:
 - Set \mathcal{K} of n arms
 - Each $i \in \mathcal{K}$ has a (mean) payoff function $p_i(au)$
 - τ : # of rounds passed since *i* was last played (called "delay")
 - $p_i(\tau)$ is monotone non-decreasing in au
 - Polynomial and known recovery time τ_{\max} s.t.

$$p_i(au) = p_i(au_{\max}), orall au > au_{\max}$$

- Setting:
 - Set \mathcal{K} of n arms
 - Each $i \in \mathcal{K}$ has a (mean) payoff function $p_i(\tau)$
 - τ : # of rounds passed since *i* was last played (called "delay")
 - $p_i(\tau)$ is monotone non-decreasing in τ
 - Polynomial and known recovery time τ_{\max} s.t.

$$p_i(au) = p_i(au_{\max}), orall au > au_{\max}$$

- Agent plays at most k arms per round (semi-bandit feedback)
 - For each arm played *i* (under delay τ), collect a payoff with mean $p_i(\tau)$

ヘロト 人間ト ヘヨト ヘヨト

- Setting:
 - Set \mathcal{K} of n arms
 - Each $i \in \mathcal{K}$ has a (mean) payoff function $p_i(\tau)$
 - τ : # of rounds passed since *i* was last played (called "delay")
 - $p_i(\tau)$ is monotone non-decreasing in τ
 - Polynomial and known recovery time τ_{\max} s.t.

 $p_i(au) = p_i(au_{\max}), orall au > au_{\max}$

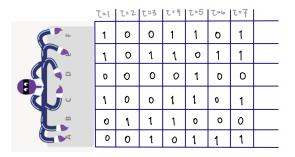
- Agent plays at most k arms per round (semi-bandit feedback)
 - For each arm played i (under delay τ), collect a payoff with mean p_i(τ)
- Planning: payoff function known (NP-hard in general)
- Learning: payoff function initially unknown
- Goal: Minimize the ρ-regret for T rounds, where ρ is the best-known competitive guarantee for planning

白 医水晶 医水清 医医小清

Model: Side observations on a graph

ヨト イヨト

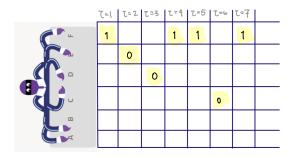
Full vs Bandit Information



э

イロト 不得 トイヨト イヨト

Full vs Bandit Information



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Side Information

In many applications, information regime is between these two extremes:

- Related products: If you like songs by Tsaous, you may like songs by Tountas.
- Related users: Response by a user on a social network my provide information on connected users.

• etc.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Side observations on a Graph

- $G = (\mathcal{K}, E)$ undirected, unweighted graph
- $\mathcal{K} = \{1, ..., K\}$ actions/arms nodes
- Playing an action *i* yields a stochastic reward X_i of initially unknown mean μ_i.
- Let \mathcal{K}_i : neighbors of node *i*
 - At each time t the player plays A_t and collects (and observes) $X_{A_t}(t)$.

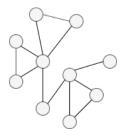
- 4 回 ト 4 三 ト - 4 三 ト - -

Side observations on a Graph

- $G = (\mathcal{K}, E)$ undirected, unweighted graph
- $\mathcal{K} = \{1, ..., K\}$ actions/arms nodes
- Playing an action *i* yields a stochastic reward X_i of initially unknown mean μ_i.
- Let \mathcal{K}_i : neighbors of node *i*
 - At each time t the player plays A_t and collects (and observes) $X_{A_t}(t)$.
 - The player also observes $X_j(t), \ \forall j \in \mathcal{K}_{A_t}$.
 - Adversarial setting studied in Mannor & Shamir, 2011.

Side observations on a Graph

K actions of unknown mean rewards $\mu_1,...,\mu_K$



э

・ 何 ト ・ ヨ ト ・ ヨ ト

Side observations on a Graph

K actions of unknown mean rewards $\mu_1,...,\mu_K$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Side observations on a Graph

K actions of unknown mean rewards $\mu_1,...,\mu_K$

・ 何 ト ・ ヨ ト ・ ヨ ト

Gaussian Bandits with Side Observations

Model (introduced in Wu, György, and Szepesvári 2015):

- K Gaussian arms with (unknown) mean rewards (μ_1, \ldots, μ_K)
- Known feedback matrix $\Sigma = (\sigma_{i,j})_{i,j \in \mathcal{K}}$
- At each round t, by playing an action $i \in \mathcal{K}$ the player:
 - collects $X_{i,t} \sim \mathcal{N}(\mu_i, \sigma_{i,i}^2)$
 - observes $X_{j,t} \sim \mathcal{N}(\mu_j, \sigma_{i,j}^2)$ for each arm $j \in \mathcal{K}$
 - (rewards are realized independently)

Objective: Maximize the expected cumulative regret

A (1) < A (1) < A (1) </p>

Gaussian Bandits with Side Observations

• Wu, György, and Szepesvári 2015: provide asymptotically optimal regret for the special case where $\sigma_{i,j} \in \{\sigma, \infty\}$ which is equivalent to Graph-structured feedback.

General case:

- Can be modeled as a weighted graph $G = (\mathcal{K}, E, \Sigma)$
- $\mathcal{K} = \{1, ..., K\}$ actions/nodes
- Edge (i,j) has weight σ_{ij} (can be ∞)

<日

<</p>

Key Idea:

- Need to play each arm enough to distinguish best from second best (etc.)
- In usual setting, we need to play each suboptimal arm: $N_i(t)/\sigma_i^2 \ge 2/\Delta_i^2$ times.
- Now we need to account for different variances:

Key Idea:

- Need to play each arm enough to distinguish best from second best (etc.)
- In usual setting, we need to play each suboptimal arm: $N_i(t)/\sigma_i^2 \ge 2/\Delta_i^2$ times.
- Now we need to account for different variances:

$$\sum_{j\in[\mathcal{K}]}\frac{N_j(t)}{\sigma_{ji}^2}\geq 2/\Delta_i^2.$$

< 回 > < 三 > < 三 > -

Can use this to build a lower-bounding LP:

- Any algorithm must distinguish strictly suboptimal arms.
- Thus if arm *j* is played *c_j* times, for all *i* we must have:

$$\sum_{j\in[\mathcal{K}]}\frac{c_j}{\sigma_{ji}^2}\geq 2/\Delta_i^2.$$

The optimal algorithm will accomplish this while minimizing suboptimality: Σ_{i∈K} c_iΔ_i(μ)

Formulation: For any reward vector $\mu \in [0, \infty)^{\kappa}$, we define:

$$C(\mu) = \left\{ c \in [0,\infty)^{\mathcal{K}} : \\ \sum_{j \in \mathcal{K}} \frac{c_j}{\sigma_{ji}^2} \ge \frac{2}{\Delta_i^2(\mu)}, \forall i \neq i^*(\mu) \\ \sum_{j \in \mathcal{K}} \frac{c_j}{\sigma_{ji}^2} \ge \frac{2}{\Delta_{\min}^2(\mu)}, i = i^*(\mu) \right\},$$

where $i^*(\mu) = \operatorname{argmax}_{i \in \mathcal{K}} \mu_i$, $\Delta_i(\mu) = \max_{j \in \mathcal{K}} \mu_j - \mu_i$, and $\Delta_{\min}(\mu) = \min_{i \in \mathcal{K}, \Delta_i(\mu) > 0} \Delta_i(\mu)$.

Let the optimal solution:

$$c^* = \operatorname*{arg\,min}_{c \in C(\mu)} \sum_{i \in \mathcal{K}} c_i \Delta_i(\mu).$$

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Theorem

For environment (μ, Σ) , the regret of any consistent policy satisfies

$$\liminf_{T\to\infty}\frac{R_T(\mu)}{\log T}\geq \sum_{i\in\mathcal{K}}c_i^*\Delta_i(\mu).$$

LP-based Algorithm

Estimating Empirical Means:

$$egin{array}{rll} \hat{\mu}(t) &=& \sum_{ au=1}^{t-1}rac{X_{ au}}{\sigma_{i_{ au}}^2} \Big/\sum_{ au=1}^{t-1}rac{1}{\sigma_{i_{ au}}^2} \ &=& \sum_{j\in [\mathcal{K}]}\sum_{ au=1}^{t-1}rac{X_{ au}\mathbb{I}(i_{ au}=j)}{\sigma_j^2} \Big/\zeta(au), \end{array}$$

where:
$$\zeta(\tau) = \sum_{j \in [K]} \frac{N_j(t)}{\sigma_j^2}$$
.

э

<ロト <回ト < 回ト < 回ト < 回ト -

Algorithm Idea: Estimate the LP and at the same time implement its solution for exploration.

At each round t, the algorithm performs one of the following:

- Greedy exploitation: Play the arm of best estimated reward
- Uniform exploration: Ensure $C(\widehat{\mu})$ is "close" to $C(\mu)$
- LP-dictated exploration: Follow the actions indicated by (estimated) LP based on C(μ̂)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

At each round *t*:

Greedy exploitation: If $(\frac{N_1(t)}{\log t}, \frac{N_2(t)}{\log t}, \dots, \frac{N_K(t)}{\log t}) \in C(\widehat{\mu})$, then play

$$i_t \leftarrow \arg \max_{i \in \mathcal{K}} \widehat{\mu}_i(t)$$

3

イロト イヨト イヨト ・

LP-based Algorithm

At each round *t*:

 n_e : # exploration rounds (initialized at 0)

Uniform exploration: If $(\frac{N_1(t)}{\log t}, \frac{N_2(t)}{\log t}, \dots, \frac{N_{\mathcal{K}}(t)}{\log t}) \notin C(\widehat{\mu})$ and

$$\min_{i \in \mathcal{K}} \sum_{ au=1}^{t-1} rac{1}{\sigma_{i_ au i}^2} < o(n_e(t)) ext{ (not uniformly explored)}$$

then play

$$i_t \leftarrow \arg\min_{k \in \mathcal{K}} \sigma_{ki}^2$$
, where $i = \arg\min_{k \in \mathcal{K}} \sum_{\tau=1}^{t-1} \frac{1}{\sigma_{i_\tau k}^2}$,

and increase n_e by 1

白卜(同卜(百卜(百卜)百

At each round *t*:

LP-dictated exploration:

If $\left(\frac{N_1(t)}{\log t}, \frac{N_2(t)}{\log t}, \dots, \frac{N_{\mathcal{K}}(t)}{\log t}\right) \notin C(\widehat{\mu})$ and arms uniformly explored, then • Compute $c^*(\widehat{\mu}(t)) \leftarrow \arg \min_{c \in C(\widehat{\mu}(t))} \sum_{i \in \mathcal{K}} c_i \Delta_i(\widehat{\mu}(t))$ • Play arm

$$i_t = i ext{ with } N_i(t) < c_i^*(\widehat{\mu}(t)) \log t,$$

and increase n_e by 1

く 何 ト く ヨ ト く ヨ ト

Theorem

The regret of the above algorithm satisfies

$$\limsup_{T \to \infty} \frac{R_T(\mu)}{\log T} \leq \sum_{j \in \mathcal{K}} \Delta_j(\mu) c_j^*(\mu) \quad (up \ to \ constant \ factors)$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

"Asymptotically-Optimal Gaussian Bandits with Side Observations," Atsidakou, Papadigenopoulos, **C**., Sanghavi, Shakkottai; ICML 2022 https://proceedings.mlr.press/v162/atsidakou22a.html

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Parting thoughts

- Bandits are a well-explored framework.
- Classical results critically rely on certain assumptions, such as stationarity.
- Without these, many interesting problems still remain!

constantine@utexas.edu
https://caramanis.github.io/