Statistical Inference from Dependent Observations

Constantinos Daskalakis
EECS and CSAIL, MIT
Supervised Learning Setting

Given:

• Training set \((x_i, y_i)_{i=1}^n\) of examples
 - \(x_i\): feature (aka covariate) vector of example \(i\)
 - \(y_i\): label (aka response) of example \(i\)

• Assumption: \((x_i, y_i)_{i=1}^n \sim_{iid} D\) where \(D\) is unknown

• Hypothesis class \(\mathcal{H} = \{h_\theta \mid \theta \in \Theta\}\) of (randomized) responses
 - e.g. \(\mathcal{H} = \{\langle \theta, \cdot \rangle \mid \|\theta\|_2 \leq 1\}\),
 - e.g. 2 \(\mathcal{H} = \{\text{some class of Deep Neural Networks}\}\)
 - generally, \(h_\theta\) might be randomized

• Loss function: \(\ell : Y \times Y \rightarrow \mathbb{R}\)

Goal: Select \(\theta\) to minimize expected loss: \(\min_\theta (\mathbb{E}_{(x,y)} \mathbb{E}_{D} [\ell(h_\theta(x), y)])\)

Goal 2: In realizable setting (i.e. when, under \(D\), \(y \sim h_{\theta^*}(x)\)), estimate \(\theta^*\)
E.g. Linear Regression

Input: n feature vectors $x_i \in \mathbb{R}^d$ and responses $y_i \in \mathbb{R}, i = 1, \ldots, n$

Assumption: for all i, y_i sampled as follows:

- $y_i = \theta^\top x_i + \epsilon_i$, where $\epsilon_i \sim \mathcal{N}(0, 1)$

Goal: Infer θ
E.g.2 Logistic Regression

Input: n feature vectors $x_i \in \mathbb{R}^d$ and binary responses $y_i \in \{\pm 1\}$

Assumption: for all i, y_i sampled as follows:

- $\Pr[y_i = \sigma_i] = \frac{1}{1 + e^{-2\theta x_i \sigma_i}}$

Goal: Infer θ
Maximum Likelihood Estimator (MLE)

In the standard linear and logistic regression settings, under mild assumptions about the design matrix X, whose rows are the covariate vectors, MLE is strongly consistent.

MLE estimator $\hat{\theta}$ satisfies: $\|\hat{\theta} - \theta\|_2 = O \left(\frac{\sqrt{d}}{\sqrt{n}} \right)$
Beyond Realizable Setting: Learnability

- Recall:
 - **Assumption:** \(\{(X_1, Y_1), \ldots, (X_n, Y_n)\} \sim_{iid} D \), where \(D \) unknown
 - **Goal:** choose \(h \in \mathcal{H} \) to minimize expected loss under some loss function \(\ell \), i.e.
 \[
 \min_{h \in \mathcal{H}} \mathbb{E}_{(x, y) \sim D} [\ell(h(x), y)]
 \]
 Loss\(_D\)\(_h\)

- Let \(\hat{h} \in \mathcal{H} \) be the **Empirical Risk Minimizer**, i.e.
 \[
 \hat{h} \in \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i} \ell(h(x_i), y_i)
 \]

- Then:
 \[
 \text{Loss}_D(\hat{h}) \leq \inf_{h \in \mathcal{H}} \text{Loss}_D(h) + O\left(\sqrt{VC(\mathcal{H})}/n\right), \text{ for Boolean } \mathcal{H}, \text{ 0-1 loss } \ell
 \]
 \[
 \text{Loss}_D(\hat{h}) \leq \inf_{h \in \mathcal{H}} \text{Loss}_D(h) + O(\lambda \mathcal{R}_n(\mathcal{H})), \text{ for general } \mathcal{H}, \text{ } \lambda\text{-Lipschitz } \ell
 \]
 \[
 \vdots
 \]
Supervised Learning Setting on Steroids

But what do these results really mean?
Broader Perspective

- **ML methods commonly operate under stringent assumptions**
 - train set: independent and identically distributed (i.i.d.) samples
 - test set: i.i.d. samples from same distribution as training

- **Goal:** *relax standard assumptions* to accommodate two important challenges
 - (i) censored/truncated samples and (ii) dependent samples
 - Censoring/truncation \Leftarrow systematic missing of data
 \Rightarrow train set \neq test set
 - Data Dependencies \Leftarrow peer effects, spatial, temporal dependencies
 \Rightarrow no apparent source for independence
Today’s Topic: Statistical Inference from Dependent Observations
Why dependent?

Observations \((x_i, y_i)_i\) are commonly collected on some *spatial* domain, some *temporal* domain, or on a *social network*. As such, they are not independent, but intricately dependent

e.g. spin glasses
• neighboring particles influence each other

e.g. social networks
decisions/opinions of nodes are influenced by the decisions of their neighbors (*peer effects*)
Statistical Physics and Machine Learning

- Spin Systems [Ising’25]
- MRFs, Bayesian Networks, Boltzmann Machines
 - Probability Theory
 - MCMC
 - Machine Learning
 - Computer Vision
 - Game Theory
 - Computational Biology
 - Causality
 - …
Peer Effects on Social Networks

Several studies of peer effects, in applications such as:
- criminal networks [Glaeser et al’96]
- welfare participation [Bertrand et al’00]
- school achievement [Sacerdote’01]
- participation in Retirement Plans [Duflo-Saez’03]
- obesity [Trogdon et al’08, Christakis-Fowler’13]

AddHealth Dataset:
- National Longitudinal Study of Adolescent Health
- National study of students in grades 7-12
- friendship networks, personal and school life, age, gender, race, socio-economic background, health,…

MicroEconomics:
- Behavior/Opinion Dynamics e.g.
 [Schelling’78], [Ellison’93], [Young’93, ’01],
 [Montanari-Saberi’10],…

Econometrics:
- Disentangling individual from network effects [Manski’93], [Bramouille-Djebarri-Fortin’09], [Li-Levina-Zhu’16],…
Menu

• Motivation
• Part I: Regression w/ dependent observations
• Part II: Statistical Learning Theory w/ dependent observations
• Conclusions
Menu

• Motivation
• Part I: Regression w/ dependent observations
• Part II: Statistical Learning Theory w/ dependent observations
• Conclusions
Standard Linear Regression

Input: n feature vectors $x_i \in \mathbb{R}^d$ and responses $y_i \in \mathbb{R}$, $i = 1, \ldots, n$

Assumption: for all i, y_i sampled as follows:

- $y_i = \theta^\top x_i + \epsilon_i$, where $\epsilon_i \sim \mathcal{N}(0, 1)$
- y_1, \ldots, y_n independent

Goal: Infer θ
Standard Logistic Regression

Input: n feature vectors $x_i \in \mathbb{R}^d$ and binary responses $y_i \in \{\pm 1\}$

Assumption: for all i, y_i sampled as follows:

- $\Pr[y_i = \sigma_i] = \frac{1}{1 + e^{-2\theta^\top x_i \sigma_i}}$
- y_1, \ldots, y_n independent

Goal: Infer θ
In the standard linear and logistic regression settings, under mild assumptions about the design matrix X, whose rows are the covariate vectors, MLE is strongly consistent.

MLE estimator $\hat{\theta}$ satisfies: $\|\hat{\theta} - \theta\|_2 = O\left(\frac{\sqrt{d}}{\sqrt{n}}\right)$
Standard Linear Regression

Input: \(n \) feature vectors \(x_i \in \mathbb{R}^d \) and responses \(y_i \in \mathbb{R}, \ i = 1, \ldots, n \)

Assumption: for all \(i \), \(y_i \) sampled as follows:

Goal: Infer \(\theta \)
Linear Regression w/ Dependent Samples

Input: n feature vectors $x_i \in \mathbb{R}^d$ and responses $y_i \in \mathbb{R}$, $i = 1, \ldots, n$

Assumption: for all i, y_i sampled as follows conditioning on y_{-i}:

- $y_i = \theta^\top x_i + \beta \sum_{j \neq i} A_{ij} (y_j - \theta^\top x_j) + \epsilon_i$, where $\epsilon_i \sim \mathcal{N}(0, 1)$
- y_1, \ldots, y_n independent

Parameters:
- coefficient vector θ, inverse temperature β (unknown)
- Interaction matrix A (known)

Goal: Infer θ, β
Standard Logistic Regression

Input: n feature vectors $x_i \in \mathbb{R}^d$ and binary responses $y_i \in \{\pm 1\}$

Assumption: for all i, y_i sampled as follows:

- $\Pr[y_i = \sigma_i] = \frac{1}{1 + e^{-2\theta^\top x_i \sigma_i}}$

- y_1, \ldots, y_n independent

Goal: Infer θ
Logistic Regression w/ Dependent Samples (today’s focus)

Input: \(n \) feature vectors \(x_i \in \mathbb{R}^d \) and binary responses \(y_i \in \{\pm 1\} \)

Assumption: for all \(i \), \(y_i \) sampled as follows **conditioning on** \(y_{-i} \):

\[
\text{Pr}[y_i = \sigma_i] = \frac{1}{1 + e^{-2(\mathbf{\theta}^\top x_i + \beta \sum_{j \neq i} A_{ij} y_j)\sigma_i}}
\]

- \(y_1, \ldots, y_n \) independent

Parameters:
- coefficient vector \(\mathbf{\theta} \), inverse temperature \(\beta \) (unknown)
- Interaction matrix \(A \) (known)

Goal: Infer \(\theta, \beta \)
Logistic Regression w/ Dependent Samples (today’s focus)

Input: n feature vectors $x_i \in \mathbb{R}^d$ and binary responses $y_i \in \{\pm 1\}$

Assumption: y_1, \ldots, y_n are sampled jointly according to measure $\Pr[y = \sigma] = \frac{\exp\left(\sum_{i=1}^{n} (\theta^T x_i)\sigma_i + \beta \sigma^T A \sigma\right)}{Z}$

Parameters:
- coefficient vector θ, inverse temperature β (unknown)
- Interaction matrix A (known)

Goal: Infer θ, β
- Challenge: one sample, likelihood contains Z
 i.e. lack of LLN, hard to compute MLE

For $\beta = 0$ equivalent to Logistic regression
Main Result for Logistic Regression from Dependent Samples

Theorem. Make the standard assumptions that θ_0 and all x_i's are bounded in ℓ_2, and that $\lambda_{\text{min}}\left(\frac{1}{n}X^TX\right)$ is bounded away from zero, where X is the matrix whose rows are the feature vectors.

Suppose additionally that β_0 and $\|A\|_{\infty}$ are bounded by absolute constants (independent of n), and that $\|A\|_F^2 = \Omega(n)$.

In time $O(nd \log n)$ an estimate $(\hat{\theta}, \hat{\beta})$ can be computed, which is $O\left(\sqrt{\frac{d}{n}}\right)$ consistent. In particular, $\left\| (\hat{\theta}, \hat{\beta}) - (\theta_0, \beta_0) \right\|_2 \leq O\left(\sqrt{\frac{d}{n}}\right)$ with probability 99.9%.

N.B. We show similar results for linear regression with peer effects.
Menu

• Motivation
• Part I: Regression w/ dependent observations
 • Proof Ideas
• Part II: Statistical Learning Theory w/ dependent observations
• Conclusions
Menu

• Motivation
• Part I: Regression w/ dependent observations
 • Proof Ideas
• Part II: Statistical Learning Theory w/ dependent observations
• Conclusions
MLE instead of MLE

- **Likelihood** involves $Z = Z_{\theta, \beta}$ (the partition function), so is non-trivial to compute.
- [Besag’75,…,Chatterjee’07] studies the maximum pseudolikelihood estimator (MPLE)

\[
PL(\beta, \theta) := \left(\prod_i \Pr_{\beta, \theta, A}[y_i|y_{-i}] \right)^{1/n} = \left(\prod_i \frac{1}{1 + \exp(-2(\theta^T x_i + \beta A_i^T y_i))} \right)^{1/n}
\]

- LogPL does not contain Z and is concave. Is MPLE consistent?
 - [Chatterjee’07]: yes, when $\beta > 0, \theta = 0$
 - [BM’18,GM’18]: yes, when $\beta > 0, \theta \neq 0 \in \mathbb{R}, x_i = 1$, for all i
- General case?
Problem: Given:
• \(\tilde{x} = (x_1, ..., x_n) \) and
• \(\tilde{y} = (y_1, ..., y_n) \in \{\pm 1\}^n \) sampled as
 \[
 \Pr[\tilde{y} = \sigma] = \frac{\exp(\sum_i (\theta^T x_i) \sigma_i + \beta \sigma^T A \sigma)}{z}
 \]
Infer \(\theta, \beta \)

\[
(\theta_t, \beta_t) = t(\theta_0, \beta_0) + (1 - t)(\hat{\theta}, \hat{\beta}) \text{ where } (\theta_0, \beta_0) \text{ true and } (\hat{\theta}, \hat{\beta}) \text{ MLE.}
\]
Analysis

Problem: Given:

- $\tilde{x} = (x_1, ..., x_n)$ and
- $\tilde{y} = (y_1, ..., y_n) \in \{\pm 1\}^n$ sampled as

\[
\Pr[\tilde{y} = \sigma] = \frac{\exp(\sum_i (\theta^T x_i) \sigma_i + \beta \sigma^T A \sigma)}{z}
\]

Infer θ, β

\[
(\theta_t, \beta_t) = t(\theta_0, \beta_0) + (1 - t)(\hat{\theta}, \hat{\beta}) \text{ where } (\theta_0, \beta_0) \text{ true and } (\hat{\theta}, \hat{\beta}) \text{ MPLE.}
\]

\[
g(t) := (\theta - \hat{\theta}, \beta - \hat{\beta})^T \nabla \log PL(\theta_t, \beta_t), \quad g'(t) = (\theta - \hat{\theta}, \beta - \hat{\beta})^T \nabla^2 \log PL(\theta_t, \beta_t)(\theta - \hat{\theta}, \beta - \hat{\beta}).
\]

\[
\left\Vert (\theta - \hat{\theta}, \beta - \hat{\beta}) \right\Vert_2 \cdot \left\Vert \nabla \log PL(\theta_0, \beta_0) \right\Vert_2 \geq |g(1) - g(0)| \geq \left| \int_0^1 g'(t) dt \right| \geq \min_{(\theta, \beta)} \lambda_{\min} \left(-\nabla^2 \log PL(\theta, \beta) \right) \left\Vert (\theta - \hat{\theta}, \beta - \hat{\beta}) \right\Vert_2^2.
\]

Concentration: gradient of log-pseudolikelihood at truth should be small;
- show $\left\Vert \nabla \log PL(\theta_0, \beta_0) \right\Vert_2$ is $O(d/n)$ with probability at least 99%

Anti-concentration: Constant lower bound on $\min_{(\theta, \beta)} \lambda_{\min} \left(-\nabla^2 \log PL(\theta, \beta) \right)$ w.pr. $\geq 99%$
Menu

• Motivation
• Part I: Regression w/ dependent observations
 • Proof Ideas
• Part II: Statistical Learning Theory w/ dependent observations
• Conclusions
Menu

• Motivation
• Part I: Regression w/ dependent observations
 • Proof Ideas
• Part II: Statistical Learning Theory w/ dependent observations
• Conclusions
Supervised Learning

Given:

• Training set \((x_i, y_i)_{i=1}^n\) of examples

• Hypothesis class \(\mathcal{H} = \{h_\theta \mid \theta \in \Theta\}\) of (randomized) responses

• Loss function: \(\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}\)

Assumption: \((x_i, y_i)_{i=1}^n \sim_{iid} D\) where \(D\) is unknown

Goal: Select \(\theta\) to minimize expected loss: \(\min_\theta \mathbb{E}_{(x,y) \sim D} [\ell(h_\theta(x), y)]\)

Goal 2: In realizable setting (i.e. when, under \(D\), \(y \sim h_{\theta^*}(x)\)), estimate \(\theta^*\)
Supervised Learning w/ Dependent Observations

Given:
- Training set \((x_i, y_i)_{i=1}^n\) of examples
- Hypothesis class \(\mathcal{H} = \{h_\theta \mid \theta \in \Theta\}\) of (randomized) responses
- Loss function: \(\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}\)

Assumption: \((x_i, y_i)_{i=1}^n \sim_{\text{ua}} D\) where \(D\) is unknown

Goal: Select \(\theta\) to minimize expected loss:
\[
\min_{\theta} \mathbb{E}_{(x,y) \sim D} [\ell(h_\theta(x), y)]
\]

Goal 2: In realizable setting (i.e. when, under \(D\), \(y \sim h_{\theta^*}(x)\)), estimate \(\theta^*\)
Supervised Learning w/ Dependent Observations

Given:

- Training set \((x_i, y_i)_{i=1}^{n}\) of examples
- Hypothesis class \(\mathcal{H} = \{h_\theta \mid \theta \in \Theta\}\) of (randomized) responses
- Loss function: \(\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}\)

Assumption': a joint distribution \(D\) samples training examples and unknown test sample \textit{jointly}, i.e.

- \((x_i, y_i)_{i=1}^{n} \cup (x, y) \sim D\)

Goal: select \(\theta\) to minimize: \(\min_{\theta} \mathbb{E}[\ell(h_\theta(x), y)]\)
Main result

Learnability is possible when joint distribution D over training set and test set satisfies *Dobrushin's condition*.
Dobrushin’s condition

• Given a joint probability vector $\vec{Z} = (Z_1, ..., Z_m)$ define the **influence of variable i to variable j**:
 • “worst effect of Z_i to the conditional distribution of Z_j given Z_{-i-j}”
 • $\text{Inf}_{i \to j} = \sup_{z_i,z_i',z_{-i-j}} d_{TV} (\Pr[Z_j \mid z_i,z_{-i-j}],\Pr[Z_j \mid z_i',z_{-i-j}])$

• **Dobrushin’s condition:**
 • “all nodes have limited total influence exerted on them”
 • For all i, $\sum_{j \neq i} \text{Inf}_{j \to i} < 1$.

Implies: Concentration of measure
Fast mixing of Gibbs sampler
Learnability under Dobrushin’s condition

• Suppose:
 • \{ (X_1, Y_1), ..., (X_n, Y_n), (X, Y) \} \sim D, where D is joint distribution
 • D: satisfies Dobrushin’s condition
 • D: has the same marginals

• Define \(\text{Loss}_D(h) = \mathbb{E}[\ell(h(x), y)] \)

• There exists a learning algorithm which, given \{ (X_1, Y_1), ..., (X_n, Y_n) \}, outputs \(\hat{h} \in \mathcal{H} \) such that

\[
\text{Loss}_D(\hat{h}) \leq \inf_{h \in \mathcal{H}} \text{Loss}_D(h) + \tilde{O}\left(\sqrt{\text{VC}(\mathcal{H})/n}\right) \quad \text{for Boolean } \mathcal{H}, \ 0-1 \text{ loss } \ell
\]

\[
\text{Loss}_D(\hat{h}) \leq \inf_{h \in \mathcal{H}} \text{Loss}_D(h) + \tilde{O}(\lambda \mathcal{G}_n(\mathcal{H})) \quad \text{for general } \mathcal{H}, \ \lambda\text{-Lipschitz } \ell
\]

(need stronger than Dobrushin condition for general \(\mathcal{H} \))

Essentially the same bounds as i.i.d
Menu

• Motivation
• Part I: Regression w/ dependent observations
 • Proof Ideas
• Part II: Statistical Learning Theory w/ dependent observations
• Conclusions
Menu

• Motivation
• Part I: Regression w/ dependent observations
 • Proof Ideas
• Part II: Statistical Learning Theory w/ dependent observations
• Conclusions
Goals of Broader Line of Work

Goal: *relax standard assumptions* to accommodate two important challenges

- (i) *censored/truncated samples* and (ii) *dependent samples*
- Censoring/truncation \iff *systematic missing of data*
 \implies train set \neq test set
- Data Dependencies \iff *peer effects, spatial, temporal dependencies*
 \implies no apparent source for independence
Statistical Estimation from Dependent Observations

- Regression on a network (linear and logistic, $\sqrt{d/n}$ rates):

 Constantinos Daskalakis, Nishanth Dikkala, Ioannis Panageas: *Regression from Dependent Observations*.
 In the 51st Annual ACM Symposium on the Theory of Computing (STOC’19).

- Statistical Learning Theory Framework (learnability and generalization bounds):

 Yuval Dagan, Constantinos Daskalakis, Nishanth Dikkala, Siddhartha Jayanti: *Generalization and learning under Dobrushin’s condition*.
 In the 32nd Annual Conference on Learning Theory (COLT’19).

Thank you!