Learning Halfspaces under Massart Noise

Christos Tzamos (UW Madison)

Based on joint work with Themis Gouleakis (MPI) and Ilias Diakonikolas (UW Madison)

NeurIPS 2019 (Outstanding Paper Award)

A FEW WORDS ABOUT UNIVERSITY OF WISCONSIN-MADISON

- Top CS department in US
- Great place to be:
 - Surrounded by lakes
 - University Town

Databases

Graphics

And Greek students

BACKGROUND ON MACHINE LEARNING

GOAL OF MACHINE LEARNING: GENERALIZATION

- Predicting the spring deformation
- Past observations
 - $\ 2 \ kg \rightarrow 3.2 \ cm$
 - $\ 6 \ kg \rightarrow 6.1 \ cm$
 - $10 \text{ kg} \rightarrow 9.6 \text{ cm}$

- What will the deformation be at 4 kg?
- A linear equation is predictive of the data
 - Hooke's law
- Linear Regression: Fit best line

BEYOND LINEAR DEPENDENCIES

- How to capture non-linear dependencies?
 - e.g. time it takes for an apple to reach the ground vs height
 - Equation still linear as a function of $\sqrt{\text{height}}$
- Can linearize many different problems
- What about dependence in more than one variable?
 - Multi-variate linear regression
 - $y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$
- More broadly: the goal is to fit the best curve

CLASSIFICATION PROBLEMS

- Goal is to classify data in two or more categories, e.g. sick vs healthy, cats vs dogs
- Find the curve that best separates the data

• Focus on Linear Separators also known as Halfspaces

A CLASSIFICATION PROBLEM

• Train a program to classify a person's hair as blonde vs brown:

- How to write a program to do it?
 - Simple solution: Consider a pixel in the image and look at how dark it is
 - A simple threshold rule: If x > threshold then blond else brown
 - Consider all thresholds and pick the one that works best.

A MORE COMPLEX RULE: LOOK AT MORE PIXELS

- Look at the brightness of 2 pixels in an image, let (x₁, x₂) be their brightness values
- Plot these values as points in 2d.
- Find a line that best separates the two sets.

- Or consider all pixels: Find the hyperplane that best separates all the points.
- Learning a Linear separator:
 - $w_1 x_1 + w_2 x_2 + \dots + w_d x_d > \theta$

Pixel 1 brightness

CLASSIFICATION IN MACHINE LEARNING

- Central problem in machine learning
- A dataset with different examples $x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(n)} \in \mathbb{R}^d$ and their labels $y^{(1)}, y^{(2)}, y^{(3)}, \dots, y^{(n)} \in \{-1, +1\}$
 - (The examples are assumed to be i.i.d. draws from an underlying distribution D, PAC model)
- A parameterized family *C* of functions $f : \mathbb{R}^d \rightarrow \{-1, +1\}$
 - Find the function in the family that best separates the data (Minimizes $\Pr_{(x,y) \sim D}[f(x) \neq y]$)
 - Example: Linear separators: $f(x) = \operatorname{sign}(\langle w, x \rangle \theta)$
 - (d + 1) parameters $w = (w_1, ..., w_d)$ and θ
- Two challenges
 - How many examples are needed to identify a good function?
 - Well understood in ML, typically proportional to the number of parameters
 - How to algorithmically find a good function that minimizes (misclassification) error?
 - Focus of this talk

LINEAR SEPARATORS WITH SEPARABLE DATA

- Learning linear separators has been extensively studied in ML since [Rosenblatt'58]
- If the given points can be perfectly separated by some hyperplane: **linearly separable**
- When data are linearly separable, the **Perceptron** algorithm [Rosenblatt'58] finds a perfect linear separator.
 - Number of iterations depend on the margin, i.e. distance of closest point to the linear separator
 - An optimal linear separator can also be found through linear programming in time polynomial in the dimension (no dependence on margin)

NON-SEPARABLE DATA: AGNOSTIC MODEL

- How to minimize the misclassification error when data are non-separable?
- Suppose there exists a linear separator with 1% misclassification error.
- This can be thought of as all data are linear separable but 1% are corrupted.
- Agnostic Model [Haussler'92, Kearns-Shapire-Sellie'94]:
 - Adversary can flip *arbitrary* 1% of the labels
- Strong noise model!
- Negative result: It is even computationally intractable to compute a classifier with 49% error.
 - [Guruswami-Raghevendra'06, Feldman et al.'06, Daniely'16]

NON-SEPARABLE DATA: RANDOM CLASSIFICATION NOISE

- A weaker noise model imposes that noisy examples are not adversarially chosen but randomly
- Random Classification Noise (RCN) [Angluin-Laird'88]:
 - Every label is randomly flipped with probability 1%

- Polynomial-time algorithm for learning halfspaces with RCN
 - [Blum-Frieze-Kannan-Vempala'96]
- Intuitively even though noise exists, it cancels out because it is uniformly distributed

NON-SEPARABLE DATA: MASSART NOISE

- A noise model in-between RCN and Agnostic,
- **Massart Noise**, also known as Malicious misclassification noise [Sloan'88, Rivest-Sloan'94]:
 - Every label is randomly flipped with probability at most 1% but the exact probabilities are adversarially chosen

• If f(x) is the true label of example x, then

$$y^{(i)} = \begin{cases} f(\mathbf{x}^{(i)}), & \text{with probability } 1 - \eta(\mathbf{x}^{(i)}) \\ -f(\mathbf{x}^{(i)}), & \text{with probability } \eta(\mathbf{x}^{(i)}) \end{cases}$$

where $\eta(x) \le 1\%$

SUMMARY OF NOISE MODELS AND COMPUTATIONAL RESULTS

RCN Noise Rate **exactly** 1%

Massart Noise Rate at most 1%

- Linear Separators efficiently learnable without noise
 - [e.g., Maass-Turan'94].
- Efficient algorithm for learning linear separators with RCN
 - [Blum-Frieze-Kannan-Vempala'96]
- Learning Linear Separators with Massart Noise?
- Weak agnostic learning of LTFs is computationally intractable
 - [Guruswami-Raghevendra'06, Feldman et al.'06, Daniely'16]

Agnostic Arbitrary 1% fraction

LEARNING WITH MASSART NOISE: OPEN

Open Problem [Sloan'88, Cohen'97, Blum'03]

Is there a polynomial-time algorithm with non-trivial error for linear separators?

(Or even for more restricted concept classes?)

[A. Blum, FOCS'03 Tutorial]:

"Given labeled linearly separable examples corrupted with 1% Massart noise, can we efficiently find a hypothesis that achieves misclassification error 49%?"

No progress in distribution-free setting.

Efficient algorithms when marginal is *uniform on unit sphere* (line of work started by [Awasthi-Balcan-Haghtalab-Urner'15])

MAIN ALGORITHMIC RESULT

First efficient algorithm for learning halfspaces with Massart noise.

Main Theorem: There is an efficient algorithm that learns halfspaces on \mathbb{R}^d in the distribution-independent PAC model with Massart noise. Specifically, the algorithm outputs a hypothesis *h* with misclassification error

 $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h(\mathbf{x})\neq y] \leq \eta + \epsilon$

where η is the upper bound on the Massart noise rate, and runs in time $\operatorname{poly}(d,b,1/\epsilon)$.

Remarks:

- Hypothesis is a decision-list of halfspaces.
- Misclassification error is $\eta + \epsilon$, as opposed to $\mathrm{OPT} + \epsilon$.
- First non-trivial guarantee in sub-exponential time.

INTUITION: LARGE MARGIN CASE

Target vector \mathbf{w}^* with $\|\mathbf{w}^*\|_2 = 1$ Marginal $\mathcal{D}_{\mathbf{x}}$ satisfies $|\langle \mathbf{w}^*, \mathbf{x} \rangle| \geq \gamma$

• Realizable Case:

(Perceptron =) SGD on $L_0(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y)\sim\mathcal{D}}[\operatorname{Relu}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$

• Random Classification Noise: SGD on $L_{\lambda}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y)\sim \mathcal{D}}[\text{LeakyRelu}_{\lambda}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$ for $\lambda \approx \eta$

In both cases: $L(\mathbf{w}) \ge 0$ and $L(\mathbf{w}^*) = 0$

LARGE MARGIN CASE: MASSART NOISE

Lemma 1: No convex surrogate works.

But...

Lemma 2: Let $\widehat{\mathbf{w}}$ be the minimizer of

 $L_{\lambda}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y)\sim\mathcal{D}}[\text{LeakyRelu}_{\lambda}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$ for $\lambda \approx \eta$. There exists T > 0 such that $R_T = {\mathbf{x} : |\langle \widehat{\mathbf{w}}, \mathbf{x} \rangle| \geq T}$ has:

- $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[R_T] \ge \epsilon \gamma$, and
- $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h_{\widehat{\mathbf{w}}}(\mathbf{x})\neq y \mid R_T] \leq \eta + \epsilon$.

SUMMARY OF APPROACH

Lemma 2: Let $\widehat{\mathbf{w}}$ minimizer of $L_{\lambda}(\mathbf{w}) = \mathbf{E}_{(\mathbf{x},y)\sim\mathcal{D}}[\text{LeakyRelu}_{\lambda}(-y\langle \mathbf{w}, \mathbf{x} \rangle)]$ for $\lambda \approx \eta$. There exists T > 0 such that $R_T = {\mathbf{x} : |\langle \widehat{\mathbf{w}}, \mathbf{x} \rangle| \ge T}$ has: • $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[R_T] \ge \epsilon \gamma$, and

• $\mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h_{\widehat{\mathbf{w}}}(\mathbf{x})\neq y \mid R_T] \leq \eta + \epsilon$.

Large-Margin Case:

- There exists convex surrogate with non-trivial error on unknown subset S.
- Can algorithmically identify *S* using samples.
- Use convex surrogate hypothesis on *S*.
- Iterate on complement.

General Case:

Reduce to Large Margin Case

CONCLUSIONS AND OPEN PROBLEMS

- First efficient algorithm with non-trivial error guarantees for for distribution-independent PAC learning of halfspaces with Massart noise.
- Misclassification error $\eta + \epsilon$ where η is an *upper bound* on the noise rate.

"Distribution-Independent PAC Learning of Halfspaces with Massart Noise" I. Diakonikolas, T. Gouleakis and C. Tzamos - NeurIPS 2019

Open Questions:

- Error $OPT + \epsilon$?
 - In recent work with Diakonikolas, Kontonis and Zarifis, we obtain efficient algorithms for data drawn from log-concave distributions
- Other models of robustness?

Thank you! Questions?