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Classical Estimation Problem 

Given n samples from a Gaussian distribution in d dimensions 
estimate: 
• the mean and 
• the covariance matrix. 
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Time and Sample Efficient in High Dimensions. 
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Poincare and his friend the Baker 

Anecdotal Story [Gil Kalai’s Blog Post] 

 
 
 
 
“My friend the baker,” said Poincaré, “I weighed every loaf of bread that  
I bought from you in the last year and the distribution is Gaussian with  
mean 950 grams. How can you claim that your average loaf is 1 kilogram?” 
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Poincare and his friend the Baker 

Anecdotal Story (continued) [Gil Kalai’s Blog Post] 

 
A year later the two pals meet again. 
 
“How are you doing dear Henri” asked the baker “are my bread loaves  
heavy enough for you?” 
 
“Yes, for me they are,” answered Poincaré “but when I weighed all the loaves  
last year I discovered that your mean value is still 950 grams.” 
 
“How is this possible?” asked the baker. 
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Truncated Regression 
Example [Hausman, Wise (Econometrica) 1976] 
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times the poverty level. 
 
 



Truncated Regression 
Example [Hausman, Wise (Econometrica) 1976] 

 
Data Set:  
                       (wage rate, income, education level – I.Q.) 
 
Findings (e.g. [Hause 1971]): 
Intelligence and education level have mostly no effect on the 
income and sometimes even negative effect! (?) 
 
 
 



Truncated Regression 
Example [Hausman, Wise (Econometrica) 1976] 

 
Data Set:  
                       (wage rate, income, education level – I.Q.) 
 
Findings (e.g. [Hause 1971]): 
Intelligence and education level have mostly no effect on the 
income and sometimes even negative effect! (?) 
 
Explanation: Because of the truncation bias. Workers of the same 
rate excluded if they work more hours and have higher income. 



Truncated Regression 
Example [Hausman, Wise (Econometrica) 1976] 

Explanation: Because of the truncation bias. Workers of the same 
rate excluded if they work more hours and have higher income. 
 
 
 
 
 
 
 
 I.Q. 

in
co

m
e 



Truncated Regression 
Example [Hausman, Wise (Econometrica) 1976] 

Explanation: Because of the truncation bias. Workers of the same 
rate excluded if they work more hours and have higher income. 
 
 
 
 
 
 
 
 I.Q. 

in
co

m
e 

I.Q. 

in
co

m
e 



Multidimensional Example 



Truncated Samples - Multivariate Normal 



Truncated Samples - Multivariate Normal 



Truncated Samples - Multivariate Normal 



Truncated Samples - Multivariate Normal 



Truncated Samples 

Since Galton there has been an extensive literature on estimation from  
truncated samples, motivated by 
 
 measurement limitations, 

 



Truncated Samples 

Since Galton there has been an extensive literature on estimation from  
truncated samples, motivated by 
 
 measurement limitations, 

 
 ethical considerations, 

 



Truncated Samples 

Since Galton there has been an extensive literature on estimation from  
truncated samples, motivated by 
 
 measurement limitations, 

 
 ethical considerations, 

 
 privacy considerations, 



Truncated Samples 

Since Galton there has been an extensive literature on estimation from  
truncated samples, motivated by 
 
 measurement limitations, 

 
 ethical considerations, 

 
 privacy considerations, 

 
 … 

For this reason truncated samples  
appear in: 
 physics, 

 economics, 

 social sciences, 

 psychological studies. 
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Our Results – Overview 
We provide efficient estimation for truncated multi-normal distribution. 

1. Only for known axes aligned box! 

2. No sample complexity analysis. 

3. No efficient algorithm. 

We provide a convex 
programming formulation 
which can be solved efficiently. 
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Impossible for unknown and arbitrary S! 
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Project to a convex 
region that holds!  
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Orthonormal basis under the Gaussian measure! 
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Mixtures of Two Gaussians 

Pearson [Pearson 1894] used the theoretically rigorous method of  moments  

in order to estimate the means and variances of the mixture of normal  

distributions but: 
 

1. only asymptotic results, 
 

2. only single dimensional. 
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technique to solve estimation problems when likelihood is non-convex. 



Expectation – Maximization Algorithm 

...with more than 50,000 citations according to Google Scholar! 
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technique to solve estimation problems when likelihood is non-convex. 
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Numerical Example 
We are given the following samples 
 
   
 
and we are looking for an estimation of the mean length of species 1, μ1 and the 
mean length of species 2 μ2. 

Repeat… 
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                                                                                                                                    = 
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Our Result 

First global convergence guarantees for a non-trivial instance of EM algorithm  
since its definition in 1977! 
 
Concurrent and independent work by [Xu Hsu Maleki ‘16]. 
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[Lyapunov] Universal  
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How to prove global convergence to approximate fixed points? 



Contraction Maps 



Contraction Maps 



Contraction Maps 



Contraction Maps 



Contraction Maps 



Contraction Maps 



Contraction Maps 



Contraction Maps 

How general is Banach’s Theorem? 
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Example 2 

Inhomogeneous 

Not a contraction map! 



Contraction Maps 

We are free to choose 
any distance metric d! 
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Example 1 

we rescale the axis 
according to d 

slope < 1 and hence  
a contraction map! 

When is this possible? 
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• Truncated estimation in other models? [Daskalakis Ilyas Z. ’20] 

• Estimation in truncated + Inhomogeneous Population? 

 (known estimation problem) + (censoring) 

 Better understanding of complexity of Fixed Points, e.g. 
relations to cryptography? [Bitanski Paneth Rosen ‘15], [Hubacek Yogev ‘17] 

[Sotiraki Zirdelis Z. ‘18] 

Thank you!  


