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Classical Estimation Problem

Given n samples from a Gaussian distribution in d dimensions
estimate:

e the mean and
 the covariance matrix.
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Given n samples from a Gaussian distribution in d dimensions
estimate:

e the mean and
 the covariance matrix.

How large n should be?
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Poincare and his friend the Baker

Anecdotal Story [Gil Kalai’s Blog Post]

“My friend the baker,” said Poincare, “I weighed every loaf of bread that
I bought from you in the last year and the distribution is Gaussian with
mean 950 grams. How can you claim that your average loaf is 1 kilogram?”
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Poincare and his friend the Baker

Anecdotal Story (continued) [Gil Kalai’s Blog Post]

A year later the two pals meet again.

“How are you doing dear Henri” asked the baker “are my bread loaves
heavy enough for you?”

“Yes, for me they are,” answered Poincaré “but when I weighed all the loaves
last year I discovered that your mean value is still 950 grams.”

“How 1s this possible?” asked the baker.
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Truncated Regression

Example

Data Set:
(wage rate, income, education level — 1.Q).)

Study: intelligence vs income for low wage rate workers




Truncated Regression

Example

Data Set:
(wage rate, income, education level — 1.Q).)

Study: intelligence vs income for low wage rate workers

Truncation!: samples collected only if income was less than 1.5
times the poverty level.
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income and sometimes even negative effect! (?)
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income and sometimes even negative effect! (?)

Explanation: Because of the truncation bias. Workers of the same
rate excluded it they work more hours and have higher income.
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Truncated Regression

Explanation: Because of the truncation bias. Workers of the same
rate excluded if they work more hours and have higher income.
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Multidimensional Example
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Truncated Samples
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Truncated Samples

Since Galton there has been an extensive literature on estimation from
truncated samples, motivated by

» measurement limitations, K\
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Since Galton there has been an extensive literature on estimation from
truncated samples, motivated by

» measurement limitations,
» ethical considerations,

» privacy considerations,
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We provide efficient estimation for truncated multi-normal distribution.

The survival set should only
have non-trivial mass!
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Our Results — Overview

We provide efficient estimation for truncated multi-normal distribution.

1. Only for known axes aligned box! We provide a convex

2. No sample complexity analysis. programming formulation
which can be solved efficiently.

3. No efficient algorithm.



Estimation from Truncated Samples

Multivariate Gaussian Distribution NV (u, X.)

g1 I
N ) = e (w2 e p).



Estimation from Truncated Samples

Let S C R?, we define the mass of S with respect to measure A/ (z, Z)

Nm&azﬁNm&w@.
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Estimation from Truncated Samples

Let S C R¥, we define the truncated normal distribution N'(u,Z,S) as

( 1
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Estimation from Truncated Samples

Theorem ( ). Let S C R? that satisfies Assump-
tions 1 and 2 and x4, xp, ..., x;, ii.d. samples from N (u*,X*,S), then we can
efficiently compute estimates fi and L that satisfy with probability at least

99%:

for n = Q(d?/&?).
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Truncation Set

Assumption 1 (CONSTANT MAsS)

N(p*,2%8) >«
If & — 0 then # of sample — oo.
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Truncation Set

Assumption 1 (CONSTANT MAsS)

N(p*,2%8) >«

Assumption 2 (ORACLE ACCESS)

Given x € R? we can answer if x € S or not.

Impossible for unknown and arbitrary S!



In this talk

Theorem ( ). Let S C IR? that satisfies Assump-
tions 1 and 2 and xq,xy,...,x, ii.d. samples from N (u*,I,S), then we can
efficiently compute an estimate ji that satisfies with probability at least 99%:

dry (N (i, I),N(p*, 1)) < e

for n = ©(d/e?).
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2. fort=1...T do

3 r < Sample N (u*,1,5),

4.  #+ Sample N (u{t=1 1,5)
5

y(t) — }u(t_l) — 771?(7 — f»')
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The Estimation Algorithm

1. estimate y =1 S )i X,

2. fort=1...T do

3. r< Sample N (u*,1,S),

4.  #< Sample N (u(t=1,1,5)

t—1)

5. vl 4D _pi(r—7)

6. V) < project v(Y) to the ball B = {x | Hx — y(O)H < R}

7. output TLH ZtT:o y(t)
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3. E [Hr—f'Hé] is bounded.



Convergence Analysis

7)1 SH0REIY oMK Does not hold for any s € Y.
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The Estimation Algorithm

1. estimate y =1 S )i X,

2. fort=1...T do

3. r< Sample N (u*,1,C),

4. #< Sample N (p(t=V,1,C)

t—1)

5. vl 4D _pi(r—7)

6. V)« project v(Y) to the ball B = {x | Hx — y(O)H < R}

7. output TLH ZtT:o y(t)



Convergence Analysis

Conditions for Fast Convergence of SGD
1. E[r —#] = V{(n),
2. £(u) is strongly convex,

3. E [Hr—f'Hé] is bounded.
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o Gaussian Estimation [Daskalakis, Gouleakis, Tzamos, Z. “18]

(J Unknown Survival Set [Kontonis, Tzamos, Z. “19]

Goal: Learn the parameters of the Gaussian distribution and the set!



What learning the set means?
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Gaussian Surface Area



Ny = N(O, I)
Gaussian Surface Area

Gaussian Surface Area: I'(S)
“Surface of S with respect to the Gaussian measure.”

r(s) = lim No(S + B(O,;)) — No(5)
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No=N(0,1)
Gaussian Surface Area

Gaussian Surface Area: I'(S)
“Surface of S with respect to the Gaussian measure.”

I(S) = (lgi_rf(l) No(S + B(O,;)) — No(S) ['(S) = r;qeagF(S)
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Theorem ( ). Let S C R unknown and S € S with
Gaussian Surface Area I'(S) that satisfies Assumptions 1 and xq,xp,...,x;,
i.i.d. samples from N (u*,1,S), then we can efficiently compute an estimate ji
that satisties with probability at least 99%:
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In this talk

Theorem ( ). Let S C R unknown and S € S with
Gaussian Surface Area I'(S) that satisfies Assumptions 1 and xq,xp,...,x;,
i.i.d. samples from N (u*,1,S), then we can efficiently compute an estimate ji
that satisties with probability at least 99%:

[ —p*|, <e

for n = dOIT*(8)/€%)

Concept Class Surface Area Sample Complexity
PTFs of degree k O(k) [Kane "11] dO(K)
Intersections of k halfspaces O(y/logk) [KOS "08] dO(logk)

General convex sets O(d'/4) [Ball 1993] doVd)
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> Univariate Hermite Polynomials hp(x) = 1, hi(x) = x, hp(x) = N

> Multivariate: For V = (vq,...,v;) Hy(x) = ]_[?:1 hvi(xi)

Orthonormal basis under the Gaussian measure!



Hermite Polynomials '

> Univariate Hermite Polynomials hg(x) = 1, hi(x) = x, ha(x) = NI

> Multivariate: For V = (vq,...,v;) Hy(x) = ]_[?:1 hvi(xi)

> Approximate a function f using Hermite polynomials

A

fu(x)= Y. f(V)-Hy(x) f(V)=Eyn,[f(x)Hy(x)]



Hermite Polynomials ’
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Unknown Set — Unknown Gaussian

IP(X) = 1g (x)w(x) I'(S) = Gaussian surface area of S
weighted characteristic function of S a = Gaussian mass of S

Theorem (

We need #samples n = d°0").
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Optimization Problem

M. (1) = By e No(x)

Theorem ( ).

> My (@) is a convex function of .
" = We can run SGD!

> We have sample access to NV, My, j, (14)-(*)



Main Result

Theorem ( ). Let S C R unknown and S € S with
Gaussian Surface Area I'(S) that satisfies Assumptions 1 and xq,xp,...,x;,
i.i.d. samples from N (u*,1,S), then we can efficiently compute an estimate ji
that satisfies with probability at least 99%:

[ —p*|, <e

for n = dOIT*(5)/¢%)
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Mixtures of Two Gaussians

How we can explain this asymmetry?
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Mixtures of Two Gaussians

Pearson [Pearson 1894] used the theoretically rigorous method of moments
in order to estimate the means and variances of the mixture of normal
distributions but:



Mixtures of Two Gaussians

Pearson [Pearson 1894] used the theoretically rigorous method of moments

in order to estimate the means and variances of the mixture of normal
distributions but:

1. only asymptotic results,

2. only single dimensional.



Expectation — Maximization Algorithm

EM algorithm was proposed by [Dempster Lair Rubin 1977] as a general
technique to solve estimation problems when likelihood is non-convex.



Expectation — Maximization Algorithm

EM algorithm was pI‘OpOSEd by [Dempster Lair Rubin 1977] aS a general
technique to solve estimation problems when likelihood is non-convex.

*

5 s f

...with more than 50,000 citations according to Google Scholar!



Mixtures of Two Gaussians

We assume that we have access to samples from the following mixture
of two multidimensional normal distributions

1

1
Puriy (%) = SN (g, Lx) + 5N (uy, I x).

Goal: Estimate the means u, 5.



Numerical Example Crab Q QLength
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and we are looking for an estimation of the mean length of species 1, u; and the
mean length of species 2 u,.
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Numerical Example Crab Q QLength
We are given the following samples Species

1.5 1.52 1.57 1.72 1.83 1.64 1.75

and we are looking for an estimation of the mean length of species 1, u; and the
mean length of species 2 u,.

(M-step)
Species 1 Mean Length

0.505-1.5+0.504-1.52+0.502-1.57+0.496-1.72+0.492-1.83+0.499-1.64+0.495 1.75
0.505+0.504+0.5024+0.496+0.492+0.499+0.495




Numerical Example Crab Q QLength
We are given the following samples Species

1.5 1.52 1.57 1.72 1.83 1.64 1.75

and we are looking for an estimation of the mean length of species 1, u; and the
mean length of species 2 u,.

(M-step)
Species 2 Mean Length

0.495-1.5+0.496-1.52+0.498-1.57+0.504-1.72+0.508-1.83+0.501-1.64+0.505-1.75
0.495+0.496+0.498+0.504+0.508+0.501+0.505




Numerical Example Crab Q QLength
We are given the following samples Species

1.5 1.52 1.57 1.72 1.83 1.64 1.75

and we are looking for an estimation of the mean length of species 1, u; and the
mean length of species 2 u,.

(M-step)
Species 2 Mean Length

0.495-1.5+0.496-1.52+0.498-1.57+0.504-1.72+0.508-1.83+0.501-1.64+0.505-1.75
0.495+0.496+0.498+0.504+0.508+0.501+0.505




The Estimation Algorithm

1. pick #(9 at random,

2. fort=1...T do

N(@*Y,1 x)
Nt =D,L )+ N (—pl= L %)

3. p; < evaluate

s

5. output u(T)



Our Result
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pu the EM algorithm gives an estimation fi s.t. with probability 99 %
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Our Result

Theorem ( ). Given access to n = @(d/e?) samples from
pu the EM algorithm gives an estimation fi s.t. with probability 99 %

dry (pu, pp) <&

First global convergence guarantees for a non-trivial instance of EM algorithm
since its definition in 1977!

Concurrent and independent work by [Xu Hsu Maleki ‘16].
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3. r < Sample N (p*,I1,C),
. #< Sample N (u*=1,1,C)

4
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6. pu) « project v) to the ball B = {x | Hx—ﬂm)H = R}
7

. output TLH ZtT:o ;4(”
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Truncated Samples 1 estmate 5 — 172 30
2. fort=1...T do

e Sl N OO Proof of Convergence

# < Sample MV (=1, 1,C)

4
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Truncated Samples — Inhomogeneous Population

Truncated Samples 1 esimate ) = } £y,
.fort=1...T do
- Proof of Convergence
3. r < Sample N (p*,I1,C),
# < Sample MV (=1, 1,C)

4.
5 vl plt=N) —p(r—#)

6.  p « project v") to the ball B = {x \ Hx—"(O)H = R}
7.

output TLH ZtT:o ;4(”

Inhomogeneous
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Truncated Samples 1 esimate 40 = £
Bort=loTde Proof of Convergence
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Truncated Samples 1 esimate 40 = £
Bort=loTde Proof of Convergence
3. r< Sample N(p* 1,C),

4. #¢ Sample N (p(t=1,1,C)
5. v ul=D _yy(r — )
6.

# « project vl¥) to the ball B = {x | ||x —u® | < R}
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Inhomogeneous

—_

. pick #(0 at random,

2 fort—1...Tdo Proof of Convergence

. N@E Y1 %)

3. pi < evaluate NGED,L )+ N (—pED, L %)
(t) Li Pi%i

= L T

5. output y(T)




Truncated Samples — Inhomogeneous Population

Truncated Samples

1. estimate () = %Z?:l Xi,
2. fort=1...T do
Proof of Convergence

3. r < Sample N (p*,I1,C),
# < Sample MV (=1, 1,C)

Convex Landscape

4.

5. vl ut-D Zp(r— )

6. pu) « project v) to the ball B = {x | Hx_”(O)H = R}
7.

output TLH ZtT:o ;4(”

Inhomogeneous

1. pick y(0> at random,

2 fort—1...Tdo Proof of Convergence

NED L x)
N@EED,L x)+N (—pED, L x;)

3. pi < evaluate

) (1)  Lipi%i
oo Non-Convex Landscape

5. output y(T)
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Truncated Samples

1. estimate () = 1yn  x, =5 ;
UNDERSTANDING

2. fort=1...T do MACHINE
3. r« Sample N(u*,1,C), LEARNING

4. #¢ Sample N (p(t=1,1,C)
5. v ul=D _yy(r — )
6.

# « project vl¥) to the ball B = {x | ||x —u® | < R}

7. output TLH ZtT:o ym

Inhomogeneous

—_

. pick #(0 at random,

2. fort=1...T do

) N@ED L x)

3 pi < evaluate NGO, ) TN (D )
(1) Li Pi%i

= O VY

5. output y(T)
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Truncated Samples

1. estimate () = 1yn  x, 3
UNDERSTANDING

2. fort=1...T do MACHINE
3. r« Sample N(u*,1,C), LEARNING

4. #¢ Sample N (p(t=1,1,C)
5. v ul=D _yy(r — )
6.

# « project vl¥) to the ball B = {x | ||x —u® | < R}

7. output TLH ZtT:o ;4(”

Inhomogeneous

—_

. pick #(0 at random,

?

2. fort=1...T do *

) N@D1 %)
3. pi < evaluate NGO, ) TN (D ) ? ?
[ )
4. }l<t> . Lipi%i
Y pi

?

5. output y(T)




Truncated Samples — Inhomogeneous Population

Truncated Samples 1 esimate 0 = 11, %, ,.
2. fort=1...T do UNDERSTANDING

MACHINE

3. r< Sample N(p* 1,C), LEARNING

4 # < Sample MV (=1, 1,C)
5. v ul=D _yy(r — )
6

# « project vl¥) to the ball B = {x | ||x —u® | < R}

7. output TLH ZtT:o ;4(”

Inhomogeneous 1. pick 4 at random, Try to find potential
2. fort=1...T do ? funCtiOIl.
(-1 1; ,
3. pi < evaluate N(u(H),/X(;)H\;E;u()f*l),b %) ? ?
4. ) Z}i%cl »

5. output y(T)




Truncated Samples — Inhomogeneous Population

Truncated Samples

1. estimate ”(0) = %Z?:l x;,
2. fort=1...T do
3. r< Sample N(p* 1,C),
# < Sample MV (=1, 1,C)

4.
5. v ul=D _yy(r — )
6.

# « project vl¥) to the ball B = {x | ||x —u® | < R}

7. output TLH ZtT:o ;4(”

UNDERSTANDING

MACHINE
LEARNING

Inhomogeneous

—_

. pick #(0 at random,

2. fort=1...T do

) N@ED L x)

3 pi < evaluate NGO, ) TN (D )
(1) Li Pi%i

= O VY

5. output y(T)

Try to find potential
function.

[Lyapunov] Universal
tool but only local
convergence.




Truncated Samples — Inhomogeneous Population

Truncated Samples 1 esimate 0 = 11, %, ,.
2. fort=1...T do UNDERSTANDING

MACHINE

3. r< Sample N(p* 1,C), LEARNING

4. #¢ Sample N (p(t=1,1,C)
5. v ul=D _yy(r — )
6.

# « project vl¥) to the ball B = {x | ||x —u® | < R}

7. output TLH ZtT:o ;4(”

Inhomogeneous

—_

. pick #(0 at random,

2. fort=1...T do

N@'DL %)

3. pi < evaluate NGEED, L x)+ N (—p D %) GlObal Convergence?
Li Pi%i

= ﬂ“) A > pi

5. output y(T)
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Solution Concept

e-Approximate Fixed Point
Let d* be a distance metric,

How to prove global convergence to approximate fixed points?
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Contraction Maps

Banach’s Fixed Point Theorem
Let f : D — D be a contraction map, then f has a unique fixed point x*.

Moreover f convergences globally and geometrically to x*.

How general is Banach’s Theorem?



Example 1

Let D = (—0.99,0.99) and f(x) = x°. {




Example 2

Inhomogeneous

1. pick #(© at random,
2. fort=1...T do

=) 7o 50, .
3 it evaluate o N Not a contraction map!
4 p) R
5. output y(T)




Contraction Maps

A function f : D — D is a contraction map with respect to d if

d(f(x), f(y)) < c-d(x,y) Vxye€D.

and ¢ < 1.

We are free to choose
any distance metric d!
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1 1
A% y) = logx logy —_—

we rescale the axis
according to d




Example 1

Let D = (—1,1) and f(x) = x°.

*

1 1
A(x,y) = logx logy

we rescale the axis
according to d




Converse Fixed Point Theorems!

Bessaga’s and Meyers’s Converse Fixed Point Theorems
Let f : D — D with a unique fixed point x*, then there exists a distance metric

d’ such that f is a contraction map with respect to d’.
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Our Converse Fixed Point Theorems

Theorem ( ). Let f : D — D with a unique fixed point
If f converges globally and geometrically to x* then this can be shown
through a contraction map argument.

x*.

Hardness

Complexity of Finding Fixed Points?



Complexity of Total Search Problems

FNP
T
FNP: class of search problems TFNP
whose decision version is in NP. f
PTFNP
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TFNP: class of total search problems 0 / A

of FNP, i.e. a solution always exists P PPADS
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FNP
T
FNP: class of search problems TFNP
whose decision version is in NP. f
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/ NG
PP PPP
TFNP: class of total search problems 0 / 0
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of FNP, i.e. a solution always exists PPADS
[Megiddo Papadimitriou "91] /'
ppAD  PWPP

Subclasses of TFNP introduced by

[Johnson Papadimitriou Yannakakis "88],
[Papadimitriou "94],
[Daskalakis Papadimitriou "11], [Jerabek “16]
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Summary

 Estimation Obstacles Optimization Problems

o Truncated Samples

o Inhomogeneous Population | Non-Convex Landscape

SPOYISA 2A13RID)]

\/

% Global Convergence of Iterative Methods
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Future Directions

 Truncated estimation in other models? [Daskalakis Ilyas Z. 20]

* Estimation in truncated + Inhomogeneous Population?
» (known estimation problem) + (censoring)

» Better understanding of complexity of Fixed Points, e.g.

relations to Cryptography? [Bitanski Paneth Rosen ‘15], [Hubacek Yogev “17]
[Sotiraki Zirdelis Z. “18]

Thank you! ©



