Ανάλυση Πινάκων και Εφαρμογές
Κωδικός | 9.2.3396.6 |
---|---|
Εξάμηνο | 6o |
Κατηγορία | |
Ώρες Διδασκαλίας - Ώρες Εργαστηρίου | 4 - 0 |
Διδάσκοντες | Παναγιώτης Ψαρράκος |
Περιγραφή
Σύνθετοι πίνακες: Λογισμός σύνθετων πινάκων. Ορίζουσες σύνθετων πινάκων. Γινόμενο
Kronecker. Βαθμός πίνακα: Ιδιότητες. Βαθμός αθροίσματος και γινομένου πινάκων. Κανο-
νικοί πίνακες: Ορθομοναδιαίοι μετασχηματισμοί ομοιότητας. Τριγωνοποίηση κατά Schur.
1
Ισοδύναμοι ορισμοί κανονικών πινάκων. Ιδιόχωροι κανονικών πινάκων. Ερμιτιανοί πίνα-
κες. Νόρμες: Νόρμες διανυσμάτων και πινάκων. Σχέσεις ισοδυναμίας νορμών και ανισότη-
τες, Φράγματα για τις ιδιοτιμές. Δίσκοι Gersgorin. Δείκτης κατάστασης πίνακα. Παραγο-
ντοποιήσεις πινάκων: Παραγοντοποιήσεις LU και Cholesky. Παραγοντοποίηση QR. Παρα-
γοντοποίηση ιδιαζουσών τιμών (SVD) και πολική παραγοντοποίηση. Πολυωνυμικοί πίνα-
κες: Διαίρεση και παραγοντοποίηση πολυωνυμικών πινάκων. Ιδιοτιμές και ιδιοδιανύσματα.
Κανονικές μορφές και γραμμικοποίηση. Αριθμητικό πεδίο πίνακα: Βασικές ιδιότητες. Κυρ-
τότητα.